【LeetCode】188. 买卖股票的最佳时机 IV(困难)——代码随想录算法训练营Day50

本文介绍了如何使用动态规划解决买卖股票的问题,通过两种方法(三维数组和状态压缩)计算在给定交易次数k下获取的最大利润,展示了从二维到一维数组的优化过程,以降低空间复杂度。
摘要由CSDN通过智能技术生成

题目链接:188. 买卖股票的最佳时机 IV

题目描述

给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。

示例 2:

输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
     随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

提示:

  • 1 <= k <= 100
  • 1 <= prices.length <= 1000
  • 0 <= prices[i] <= 1000

文章讲解:

视频讲解:

题解1:动态规划

思路:本题是 123. 买卖股票的最佳时机 III 的增强版,可以将 dp 数组定义成三维数组。

动态规划分析:

  • dp 数组以及下标的含义:

    dp 是一个三维数组,每行 k + 1个元素。dp[i][k][0] 表示第 i 天第 k 次持有股票所得的最大现金,dp[i][k][1] 代表第 i 天第 k 次不持有股票所得的最大现金。

  • 递推公式:dp[i][j][0] = Math.max(dp[i - 1][j][0], dp[i - 1][j - 1][1] - prices[i]),dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i - 1][j][0] + prices[i]);
  • dp 数组初始化:dp[0][k][0] = -prices[0]。
  • 遍历顺序:从前到后。
  • 打印 dp 数组:以输入k = 2、prices = [2,4,1] 为例,dp 数组为 [ [ [ 0, 0 ], [ -2, 0 ], [ -2, 0 ] ], [ [ 0, 0 ], [ -2, 2 ], [ -2, 2 ] ], [ [ 0, 0 ], [ -1, 2 ], [ 1, 2 ] ] ]。
/**
 * @param {number} k
 * @param {number[]} prices
 * @return {number}
 */
var maxProfit = function(k, prices) {
    const dp = new Array(prices.length).fill().map(() => new Array(k + 1).fill().map(() => new Array(2).fill(0)));
    for (let j = 1; j <= k; j++) {
        dp[0][j][0] = -prices[0];
    }
    for (let i = 1; i < prices.length; i++) {
        for (let j = 1; j <= k; j++) {
            dp[i][j][0] = Math.max(dp[i - 1][j][0], dp[i - 1][j - 1][1] - prices[i]);
            dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i - 1][j][0] + prices[i]);
        }
    }
    return dp[prices.length - 1][k][1];
};

分析:时间复杂度为 O(n),空间复杂度为 O(n * k)。

题解2:动态规划优化

思路:dp[i] 的状态只依赖于 dp[i - 1] 的状态,可以用一个变量 cur 保存 dp[i - 1],动态更新此变量。

/**
 * @param {number} k
 * @param {number[]} prices
 * @return {number}
 */
var maxProfit = function(k, prices) {
    const cur = new Array(k + 1).fill().map(() => new Array(2).fill(0));
    for (let j = 1; j <= k; j++) {
        cur[j][0] = -prices[0];
    }
    for (let i = 1; i < prices.length; i++) {
        for (let j = 1; j <= k; j++) {
            cur[j][0] = Math.max(cur[j][0], cur[j - 1][1] - prices[i]);
            cur[j][1] = Math.max(cur[j][1], cur[j][0] + prices[i]);
        }
    }
    return cur[k][1];
};

分析:时间复杂度为 O(n * k),空间复杂度为 O(k)。

收获

练习使用动态规划求解买卖股票问题,体验状态压缩降低空间复杂度的过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晴雪月乔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值