机器学习|白板推理笔记|资料推荐和绪论

说明

此文章根据B站【机器学习】【白板推导系列】整理,当作备忘,视频链接:

https://www.bilibili.com/video/BV1aE411o7qd?p=1&vd_source=9ad5a4e3520c719387cbea5ab7ba26a3

一、 资料推荐

教材

1、李航《机器学习方法》

公式推理比较多,新版加入了现代神经网络和深度学习部分

2、周志华《机器学习》

比较硬核,讲述的是传统机器学习的基础模型,建议搭配《机器学习公式详解》一起使用

3、PRML

模式识别领域介绍较多

4、ESL

5、Deep Learning 圣经 (张志华团队翻译)

课程

1、台大 林轩田《基石》《技法》

2、张志华《机器学习导论》《统计机器学习》

3、CS229(2017年版)

4、徐亦达 概率模型和GitHub笔记

5、台大 李宏毅 ML 2021~2023,MLDS 2018

李老师现在还在更新课程,B站有链接和配套的PPT以及CoLab的作业链接。

二、对于机器学习任务的理解:频率派vs贝叶斯派

对于样本 X = ( x 1 , . . . , x n ) n ∗ p X=(x_1,...,x_n)^{n*p} X=(x1,...,xn)np以及参数 θ \theta θ,有 X ∼ P ( X ∣ θ ) X\sim P(X|\theta) XP(Xθ)

频率派

θ \theta θ是位置的常量,可以通过极大似然求解,本质是一个求解优化Loss Function的问题
θ M L E = a r g m a x θ L ( θ ) = a r g m a x θ l o g P ( X ∣ θ ) \theta_{MLE}=argmax_\theta L(\theta)=argmax_\theta logP(X|\theta) θMLE=argmaxθL(θ)=argmaxθlogP(Xθ)
其中, x ∼ P ( x ∣ θ ) x\sim P(x|\theta) xP(xθ) P ( X ∣ θ ) = Π p ( x i ∣ θ ) P(X|\theta)=\Pi p(x_i|\theta) P(Xθ)=Πp(xiθ)

贝叶斯派

θ \theta θ也是作为随机变量,且 θ ∼ P ( θ ) \theta\sim P(\theta) θP(θ)为先验,则后验分布的贝叶斯估计为: P ( θ ∣ X ) = P ( X ∣ θ ) P ( θ ) P ( X ) P(\theta|X)=\frac{P(X|\theta)P(\theta)}{P(X)} P(θX)=P(X)P(Xθ)P(θ)
那么后验估计的核为: P ( θ ∣ X ) ∝ P ( X ∣ θ ) ⋅ P ( θ ) P(\theta|X)\propto P(X|\theta)·P(\theta) P(θX)P(Xθ)P(θ)
相应的最大后验估计(MAP): θ M A P = a r g m a x θ P ( X ∣ θ ) ⋅ P ( θ ) \theta_{MAP}=argmax_\theta P(X|\theta)·P(\theta) θMAP=argmaxθP(Xθ)P(θ)
注意到后验分布中分母部分可以写作积分形式: ∫ θ p ( X ∣ θ ) p ( θ ) d θ \int_\theta p(X|\theta)p(\theta)d\theta θp(Xθ)p(θ)dθ,带入 θ M A P \theta_{MAP} θMAP求出后验分布,于是贝叶斯角度的任务本质是求解一个积分问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值