数据结构 实验4——拓扑排序

本文介绍了拓扑排序的概念,并通过C++代码详细展示了如何使用邻接表存储有向图,并实现拓扑排序算法。实验包括创建图、输出图的邻接表以及进行拓扑排序,最后输出拓扑排序序列。拓扑排序能够检测图中是否存在环,并给出顶点的线性次序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、实验名称:拓扑排序

二、实验学时:6学时

三、实验目的

1.理解拓扑排序的特性和算法;

2.通过构造图的邻接表,掌握拓扑排序算法。

四、实验内容(步骤)

1.建立邻接表存储的图;

2.对图进行拓扑排序;

3.输出拓扑排序序列。

实验源代码:

#include<iostream>
#include<cstring>
#include<cstdlib>

#define MAXSIZE 10
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0

using namespace std;

typedef int Elemtype;
typedef struct
{
	Elemtype data[MAXSIZE];
	int top;	
}SqStack;

int InitStack(SqStack &S)
{
	S.top=-1;
	return OK;
}

int StackEmpty(SqStack S)
{
	return (S.top==-1?TRUE:FALSE);
}

int StackFull(SqStack S)
{
	return (S.top==MAXSIZE-1?TRUE:FALSE);
}

int Push(SqStack &S,Elemtype e)
{
	if(StackFull(S))
		return ERROR;
	S.top++;
	S.data[S.top]=e;
	return OK; 
}

int Pop(SqStack &S,Elemtype &e)
{
	if(StackEmpty(S))
		return ERROR;
	e=S.data[S.top];
	S.top--;
	return OK;
}

// 定义图的存储结构
typedef char VertexType[20];
typedef struct ArcNode
{
	int adjvex; // 该弧所指向的顶点的位置
	struct ArcNode *nextarc; // 指向下一条弧的指针
	// InfoType *info; // 该弧相关信息的指针 
}ArcNode; 

typedef struct VNode
{
	VertexType data; // 顶点信息 V0
	ArcNode *firstarc; // 指向第一条依附该顶点的弧的指针 
}VNode;

typedef struct
{
	VNode vertexs[20];
	int vexnum,arcnum; // 图的当前顶点数和弧数
	// GraphKind kind // 图的种类标志	
}ALGraph; 

int GetIndex(ALGraph G,char *v) // 获得顶点对应下标 
{
	int vIndex=-1;
	for(int i=0;i<G.vexnum;i++)
	{
		if(strcmp(G.vertexs[i].data,v)==0)
		{
			vIndex=i;
			break;	
		}	
	}
	if(vIndex==-1)
	{
		printf("构成弧的顶点%s输入有误。\n",v);
		exit(0);
	}
	else
		return vIndex;
}

void CreateGraph(ALGraph &G)
{
	int i,k;
	ArcNode *p,*q,*s;
	VertexType vi,vj;
	
	printf("请输入有向图的顶点数和边(弧)数:");
	scanf("%d %d",&G.vexnum,&G.arcnum);
	
	// 创建头结点
	printf("请输入顶点名称:");
	for(i=0;i<G.vexnum;i++)
	{
		scanf("%s",G.vertexs[i].data); // 结点数,可输入v0,v1,…等
		G.vertexs[i].firstarc=NULL;	
	}
	
	// 尾插入法建立各结点的单链表
	for(k=1;k<=G.arcnum;k++)
	{
		printf("请输入构成第%d条弧的顶点:",k);
		scanf("%s%s",vi,vj);
		s=new ArcNode;
		s->adjvex=GetIndex(G,vj);
		s->nextarc=NULL;
		
		p=G.vertexs[GetIndex(G,vi)].firstarc;
		if(p==NULL)
		{
			// 第1个结点
			G.vertexs[GetIndex(G,vi)].firstarc=s;
		}
		else
		{
			// 找到表尾
			while(p)
			{
				q=p;
				p=p->nextarc;	
			}
			q->nextarc=s;
		}
	}
}

void PrinAL(ALGraph G) // 以邻接表的形式输出图
{
	int i;
	ArcNode *p;
	printf("\n图的邻接表为:\n");
	for(i=0;i<G.vexnum;i++)
	{
		if(G.vertexs[i].firstarc)
			printf("%d:%s----",i,G.vertexs[i].data);
		else
			printf("%d:%s---NULL",i,G.vertexs[i].data); 

		p=G.vertexs[i].firstarc;
		while(p)
		{
			printf("%d",p->adjvex);
			p=p->nextarc;
			if(p)
				printf("--->");
		}
		printf("\n");
	}
}

void FindInDegree(ALGraph G,int indegree[])
{
	int i,k;
	ArcNode *p;
	for(i=0;i<G.vexnum;i++)
		indegree[i]=0;
	for(i=0;i<G.vexnum;i++)
	{
		p=G.vertexs[i].firstarc;
		while(p)
		{
			k=p->adjvex;
			indegree[k]++;
			p=p->nextarc;
		}
	}
}

void TopologicalSort(ALGraph G) // 进行拓扑排序 
{ // 有向图 G 采用邻接表存储结构 
	int i,count,n,k; 
	int indegree[20]; // 定义用于保存入度的数组 
	ArcNode *p;
	SqStack S;
	
	FindInDegree(G,indegree); // 求各顶点的入度存放于数组 indegree 中 
	InitStack(S); // 初始化栈 
	count=0; // 定义 count 用于记录输出的顶点数 
	for(i=0;i<G.vexnum;i++)
	{
		if(indegree[i]==0)
			Push(S,i); // 将图中所有入度为0的顶点入栈 
	}
	printf("拓扑序列为:");
	while(!StackEmpty(S))
	{
		Pop(S,n); // 取出第一个入度为0的顶点入栈 
		printf("%s ",G.vertexs[n].data); // 输出 
		count++; // 计数 
		for(p=G.vertexs[n].firstarc;p!=NULL;p=p->nextarc)
		{
			k=p->adjvex; // 获得 p点的后续顶点号 
			if(!(--indegree[k])) // 对 p点各后续顶点减1,如果入度为0则入栈 
				Push(S,k);
		}
	}
	printf("\n");
	if(count<G.vexnum)
		printf("有向图中存在环!\n"); // 结点未全部输出,图中含有回路 
}

int main()
{
	ALGraph G;
	CreateGraph(G);
	PrinAL(G);
	TopologicalSort(G);
	
	return 0;
}

运行结果

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值