RIME-CNN-LSTM-Attention超前24步多变量回归预测算法 matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

风电功率预测对于风电场安全稳定运行和电网调度具有重要意义。本文提出了一种基于雾凇算法优化卷积神经网络结合注意力机制的长短记忆网络(RIME-CNN-LSTM-Attention)的风电功率多输入单输出回归预测模型。该模型充分利用了卷积神经网络的局部特征提取能力、长短记忆网络的时间序列建模能力和注意力机制的特征加权能力,并通过雾凇算法优化超参数,提升了模型的预测精度。实验证明,该模型在多个风电场数据集上取得了优异的预测性能,为风电功率预测提供了新的思路。

1. 引言

随着风电产业的快速发展,风电功率预测在风电场安全稳定运行和电网调度中发挥着越来越重要的作用。风电功率受风速、风向、温度、湿度等多种因素影响,具有高度不确定性和波动性,因此风电功率预测是一项具有挑战性的任务。

近年来,深度学习技术在风电功率预测领域得到了广泛应用,取得了较好的预测效果。然而,传统深度学习模型往往存在以下问题:

  • 局部特征提取能力不足,难以捕捉风电功率序列中的局部相关性。

  • 时间序列建模能力有限,难以捕捉风电功率序列中的长期依赖性。

  • 缺乏对重要特征的关注,导致模型预测精度受限。

2. 模型结构

为了解决上述问题,本文提出了一种基于雾凇算法优化卷积神经网络结合注意力机制的长短记忆网络(RIME-CNN-LSTM-Attention)的风电功率多输入单输出回归预测模型。该模型的结构如图1所示。

2.1 卷积神经网络

卷积神经网络(CNN)是一种擅长提取局部特征的神经网络。在RIME-CNN-LSTM-Attention模型中,CNN层用于提取风电功率序列中的局部相关性。具体来说,CNN层由多个卷积核组成,每个卷积核在输入序列上滑动,提取局部特征。

2.2 长短记忆网络

长短记忆网络(LSTM)是一种擅长建模时间序列的循环神经网络。在RIME-CNN-LSTM-Attention模型中,LSTM层用于捕捉风电功率序列中的长期依赖性。具体来说,LSTM层由一个输入门、一个输出门和一个遗忘门组成,可以控制信息在网络中的流动,从而实现对长期依赖性的建模。

2.3 注意力机制

注意力机制是一种能够对重要特征进行加权的机制。在RIME-CNN-LSTM-Attention模型中,注意力机制层用于对LSTM层输出的特征进行加权,从而突出重要特征,抑制不重要特征。具体来说,注意力机制层由一个查询向量、一个键向量和一个值向量组成,通过计算查询向量和键向量的相似度,得到注意力权重,然后将注意力权重与值向量相乘,得到加权后的特征。

2.4 雾凇算法

雾凇算法是一种基于种群进化的优化算法。在RIME-CNN-LSTM-Attention模型中,雾凇算法用于优化模型的超参数,包括CNN层的卷积核数量、LSTM层的隐藏层节点数和注意力机制层的注意力头数等。具体来说,雾凇算法通过种群进化,不断更新超参数,并根据模型的预测精度对超参数进行选择,从而找到最优超参数。

3. 实验结果

为了验证RIME-CNN-LSTM-Attention模型的预测性能,我们在多个风电场数据集上进行了实验。实验结果表明,RIME-CNN-LSTM-Attention模型在MAE、RMSE和MAPE等评价指标上均取得了优异的预测效果,优于传统深度学习模型和统计模型。

4. 结论

本文提出了一种基于雾凇算法优化卷积神经网络结合注意力机制的长短记忆网络(RIME-CNN-LSTM-Attention)的风电功率多输入单输出回归预测模型。该模型充分利用了卷积神经网络、长短记忆网络和注意力机制的优势,并通过雾凇算法优化超参数,提升了模型的预测精度。实验证明,该模型在多个风电场数据集上取得了优异的预测性能,为风电功率预测提供了新的思路。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[P_train, ps_input] = mapminmax(P_train, 0, 1);P_test = mapminmax('apply', P_test, ps_input);

⛳️ 运行结果

🔗 参考文献

[1]姚越,刘达.基于注意力机制的卷积神经网络-长短期记忆网络的短期风电功率预测[J].现代电力, 2022(002):039.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 23
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
RIME(Rational Iterative Mapping-based Evolutionary)是一种优化算法,用于解决函数优化问题。下面是一个简单的 MATLAB 代码示例,用于实现RIME算法的霜冰优化: ```matlab % 目标函数 function fitness = objectiveFunction(x) % 这里是您的目标函数代码,根据问题定义自行编写 % x 是输入参数 % fitness 是目标函数值(越小越好) end % 霜冰优化算法 function [bestSolution, bestFitness] = frostOptimization(popSize, maxIterations, lowerBound, upperBound) % 初始化种群 population = lowerBound + (upperBound - lowerBound) * rand(popSize, 1); % 计算初始适应度值 fitness = arrayfun(@objectiveFunction, population); % 寻找初始最优解 [bestFitness, bestIndex] = min(fitness); bestSolution = population(bestIndex); % 迭代优化 for iter = 1:maxIterations % 生成新种群 newPopulation = population; for i = 1:popSize % 选择两个不同的个体 idx1 = randi(popSize); idx2 = randi(popSize); while idx2 == idx1 idx2 = randi(popSize); end % 执行霜冰优化操作 c = population(i); a = population(idx1); b = population(idx2); if objectiveFunction(a) < objectiveFunction(b) d = a; else d = b; end newPopulation(i) = 2 * c - d; end % 更新种群和适应度值 population = newPopulation; fitness = arrayfun(@objectiveFunction, population); % 更新最优解 [currentBestFitness, currentBestIndex] = min(fitness); if currentBestFitness < bestFitness bestFitness = currentBestFitness; bestSolution = population(currentBestIndex); end end end % 示例使用 popSize = 50; % 种群大小 maxIterations = 100; % 最大迭代次数 lowerBound = -10; % 输入参数的下界 upperBound = 10; % 输入参数的上界 [bestSolution, bestFitness] = frostOptimization(popSize, maxIterations, lowerBound, upperBound); disp('最优解:'); disp(bestSolution); disp('最优适应度值:'); disp(bestFitness); ``` 请注意,这只是一个简单的示例代码,用于实现RIME算法的霜冰优化。您可以根据需要修改参数和目标函数的定义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值