unordered_map&&unordered_set的应用以及底层实现(哈希表)


1️⃣unordered系列关联容器

unordered_set

⚠️unordered_set 文档介绍 点这里

1.无序集是不按特定顺序存储惟一元素的容器,并且允许基于它们的值快速检索单个元素。
2.在unordered_set中,元素的值与唯一标识它的键同时存在。键是不可变的,因此unordered_set中的元素一旦进入容器就不能被修改——但是它们可以被插入和删除。
3.在内部,unordered_set中的元素没有按照任何特定的顺序排序,而是根据它们的散列值组织到桶中,以允许直接通过它们的值快速访问单个元素(平均平均时间复杂度恒定)。
4.Unordered_set容器通过键访问单个元素的速度比set容器快,尽管它们通过元素的子集进行范围迭代的效率通常较低。容器中的迭代器至少是前向迭代器

接口说明:
1. unordered_set的构造:

函数声明 功能介绍
unordered_set unordered_set的构造函数

2. unordered_set的容量

函数声明 功能介绍
bool empty() const 检测unordered_set是否为空
size_t size() const 获取unordered_set的有效元素个数

3. unordered_set的迭代器

函数声明 功能介绍
begin 返回unordered_set第一个元素的迭代器
end 返回unordered_set最后一个元素下一个位置的迭代器
cbegin 返回unordered_set第一个元素的const迭代器
cend 返回unordered_set最后一个元素下一个位置的const迭代器

4.unordered_set的查询

函数声明 功能介绍
iterator find(const K& key) 返回key在哈希桶中的位置

5.unordered_set的修改操作

函数声明 功能介绍
insert 向容器中插入键
erase 删除容器中的键
void clear() 清空容器中有效元素个数
void swap(unordered_set&) 交换两个容器中的元素

unordered_map

⚠️unordered_map 文档介绍 点这里

  • unordered_map是存储<key, value>键值对的关联式容器,其允许通过keys快速的索引到与其对应的value。
  • 在unordered_map中,键值通常用于惟一地标识元素,而映射值是一个对象,其内容与此键关联。键和映射值的类型可能不同。
  • 在内部,unordered_map没有对<kye, value>按照任何特定的顺序排序, 为了能在常数范围内找到key所对应的value,unordered_map将相同哈希值的键值对放在相同的桶中。
  • unordered_map容器通过key访问单个元素要比map快,但它通常在遍历元素子集的范围迭代方面效率较低。
  • unordered_map实现了直接访问操作符(operator[]),它允许使用key作为参数直接访问
    value。
  • 它的迭代器至少是前向迭代器。

接口说明:
1.unordered_map的构造

函数声明 功能介绍
unordered_map 构造不同格式的unordered_map对象

2. unordered_map的容量

函数声明 功能介绍
bool empty() const 检测unordered_map是否为空
size_t size() const 获取unordered_map的有效元素个数

3. unordered_map的迭代器

函数声明 功能介绍
begin 返回unordered_map第一个元素的迭代器
end 返回unordered_map最后一个元素下一个位置的迭代器
cbegin 返回unordered_map第一个元素的const迭代器
cend 返回unordered_map最后一个元素下一个位置的const迭代器

4. unordered_map的元素访问

函数声明 功能介绍
operator[] 返回与key对应的value,没有一个默认值

注意:该函数中实际调用哈希桶的插入操作,用参数key与V()构造一个默认值往底层哈希桶中插入,如果key不在哈希桶中,插入成功,返回V(),插入失败,说明key已经在哈桶中,将key对应的value返回。

5. unordered_map的查询

函数声明 功能介绍
iterator find(const K& key) 返回key在哈希桶中的位置
size_t count(const K& key) 返回哈希桶中关键码为key的键值对的个数

注意:unordered_map中key是不能重复的,因此count函数的返回值最大为1

6. unordered_map的修改操作

函数声明 功能介绍
insert 向容器中插入键值对
erase 删除容器中的键值对
void clear() 清空容器中有效元素个数
void swap(unordered_map&) 交换两个容器中的元素

7. unordered_map的桶操作

函数声明 功能介绍
insert 向容器中插入键值对
erase 删除容器中的键值对
void clear() 清空容器中有效元素个数
void swap(unordered_map&) 交换两个容器中的元素

2️⃣底层结构

unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。

哈希概念

  • 顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O( log2N),搜索的效率取决于搜索过程中元素的比较次数.

  • 理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。

  • 如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素

当向该结构中:

  • 插入元素
    根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
  • 搜索元素
    对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功

⏫该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)


例如:数据集合{1,7,6,4,5,9};
哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。

在这里插入图片描述
用⏫该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快

在⏫上面的基础上插入 15 就会和 5 产生冲突,怎么解决呢,请接着往下看


哈希冲突

对于两个数据元素的关键字i j,i != j 但是 hash(i)==hash(j)

即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。

把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。


哈希函数

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。
哈希函数设计原则:

  • 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
  • 哈希函数计算出来的地址能均匀分布在整个空间中
  • 哈希函数应该比较简单

常见的哈希函数

1. 直接定址法–(常用)

取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
优点:简单、均匀
缺点:需要事先知道关键字的分布情况
使用场景:适合查找比较小且连续的情况

2. 除留余数法–(常用)

设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,
按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址

哈希冲突解决

解决哈希冲突两种常见的方法是:闭散列和开散列

闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置呢?

  • 线性探测
    比如我们现在回到上面的问题,现在需要插入元素15,先通过哈希函数计算哈希地址,hashAddr为5,因此15理论上应该插在该位置,但是该位置已经放了值为5的元素,即发生哈希冲突。
    线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。
  • 插入
    通过哈希函数获取待插入元素在哈希表中的位置
    如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素
  • 删除
    采用闭散列处理哈希冲突时**,不能随便物理删除哈希表中已有的元素,若直接删除元素
    会影响其他元素的搜索**。比如删除元素4,如果直接删除掉,44查找起来可能会受影
    响。因此线性探测采用标记的伪删除法来删除一个元素
// 哈希表每个空间给个标记
// EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除
enum State
{
   
	EMPTY, 
	EXIST, 
	DELETE
};

线性探测的实现
enum  State//判断这个位置是 存在  空 还是 删除
	{
   
		EMPTY,
		EXITS,
		DELETE
	};

	template<class K, class V>  //hash中的每一个节点索要具有的数据
	struct HashData
	{
   
		std::pair<K, V> _data;
		State _state = EMPTY;
	};

	template<class K>
	struct DefaultFunc
	{
   
		size_t operator()(const K& key)
		{
   
			return (size_t)key;
		}
	};

	template<>
	struct DefaultFunc<std::string>
	{
   
		size_t operator()(const std::string& key)
		{
   
			size_t hash_val = 0;
			for (const auto& ch : key)
			{
   
				hash_val = hash_val * 131 + ch;
			}
			return hash_val;
		}
	};


	template<class K, class V, class HashFuc = DefaultFunc<K>>
	class HashTable
	{
   
		typedef HashData<K, V>  Data;
	public:
		bool Insert(const std::pair<K, V>& data)
		{
   
			if (Find(data.first) != nullptr)
				return false;

			if (_tables.size() == 0 || _n * 10 / _tables.size() >= 7)
			{
   
				size_t newSize = _tables.size() == 0 ? 10 : _tables.size() * 2;

				//扩容之后需要重新从映射
				HashTable<K, V, HashFuc>NewHT;
				NewHT._tables.resize(newSize);

				for (const auto& e : _tables)
				{
   
					//这是在新的哈希表中的映射
					if (e
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值