哈希及unordered_map与unordered_set的底层实现
1. unordered系列关联式容器
1.1. 什么是unordered系列关联式容器?
在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到O(logN)。即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不太理想。
最好的查询便是,在进行很少的比较次数时就能够将元素找到,因此在C++11中,STL又提供了4个unordered(无序)系列的关联式容器,这四个容器与红黑树结构的关联式容器使用方式基本类似,只是其底层结构不同。
1.2. unordered系列关联式容器的使用
由于unordered_map,unordered_set,unordered_multimap及unordered_multiset与map,set,multimap,multiset用法几乎相同(只是unordered未进行排序)。所以不在赘述unordered容器的用法。
注:需要熟悉用法详见博客《map与set的使用》
代码示例:
void test_unordered_map_set()
{
unordered_set<int>us;
us.insert(1);
us.insert(1);
us.insert(2);
us.insert(2);
us.insert(9);
us.insert(3);
us.insert(4);
unordered_set<int>::iterator it = us.begin();
while (it != us.end())
{
cout << *it << " ";
++it;
}
cout << endl;
unordered_map<string, string> dict;
dict.insert(make_pair("permulation", "排列"));
dict["override"] = "推翻";
dict.insert(make_pair("final", "最终的"));
unordered_map<string, string>::iterator itd = dict.begin();
while (itd != dict.end())
{
cout << itd->first << ":" << itd->second << endl;
++itd;
}
cout << endl;
}
1.3. unordered系列容器的底层结构
unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构
2. 哈希
2.1. 哈希概念
顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O(logN),搜索的效率取决于搜索过程中元素的比较次数。
如果可以不经过任何比较,一次直接从表中得到要搜索的元素。 如果构造一种存储结构,通过
某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。
当向该结构中: 插入元素 根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放 搜索元素
对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功。
该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或称散列表)
例如:数据集合{1,7,6,4,5,9};
哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。
用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快
2.2.哈希冲突
对于两个数据元素的关键字和Kj (i != j),有 Ki != Kj,但有:Hash(Ki) == Hash(Kj),即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。
把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”
2.3 哈希函数
引起哈希冲突的一个原因可能是:哈希函数设计不够合理。
2.3.1. 哈希函数设计原则
1. 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
2. 哈希函数计算出来的地址能均匀分布在整个空间中
3. 哈希函数应尽量简单
2.3.2. 常见哈希函数
1. 直接定址法–(常用)
取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B 优点:简单、均匀 缺点:需要事先 知道关键字的分布情况
使用场景:适合查找比较小且连续的情况
面试题:1. 字符串中第一个只出现一次字符;2. 公司员工年龄排序
2. 除留余数法–(常用)
设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函 数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址
3. 平方取中法
假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址; 再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址。
使用场景:不知道关键字的分布,而位数又不是很大的情况
4. 折叠法
折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加 求和,并按散列表表长,取后几位作为散列地址。
使用场景:适合事先不需要知道关键字的分布,适合关键字位数比较多的情况
5. 随机数法
选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为 随机数函数。
使用场景:通常应用于关键字长度不等时采用此法
6. 数学分析法
设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。
使用场景:数字分析法通常适合处理关键字位数比较大的情况,如果事先知道关键字的分布且关键字的若干位分布较均匀的情况
2.4 哈希冲突解决
注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是哈希冲突无法避免
解决哈希冲突两种常见的方法是:闭散列和开散列
2.4.1. 闭散列
闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个”空位置中去。
1. 线性探测
在2.1中的场景中,现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr为4,因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。
线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。
插入:
1. 通过哈希函数获取待插入元素在哈希表中的位置
2. 如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素
代码表示:
// 线性探测
// 计算d中的key在表中映射的位置
size_t index = koft(d) % _tables.size();
while (_tables[index]._state == EXITS)
{
if (koft(_tables[index]._data) == koft(d))
{
return false;
}
++index;
if (index == _tables.size())
{
index = 0;
}
}
_tables[index]._data = d;
_tables[index]._state = EXITS;
_num++;
删除
采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。
比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。
代码表示
// 删除元素
// 在查找成功之后将数的状态定义为delete
bool Erase(const K& key)
{
HashData* ret = Find(key);
if (ret)
{
ret->_state = DELETE;
--_num;
return true;
}
else
{
return false;
}
}
哈希表什么情况下进行扩容?如何扩容?
散列表的载荷因子定义为: a =填入表中的元素个数/散列表的长度
a是散列表装满程度的标志因子。由于表长是定值,a与“填入表中的元素个数”成正比,所以,a越大,表明填入表中的元素越多,产生冲突的可能性就越大;反之,a越小,标明填入表中的元素越少,产生冲突的可能性就越小。实际上,散列表的平均查找长度是载荷因子a的函数,只是不同处理冲突的方法有不同的函数。
对于开放定址法,荷载因子是特别重要因素,应严格限制在0. 7-0. 8左右。超过0. 8,查表时的CPU缓存不命中按照指数曲线上升。因此,一些采用开放定址法的hash库,如Java的系统库限制了荷载因子为0.75,超过此值将resize散列表。
代码表示:
// 扩容操作
// 负载因子大于0.7时,进行(2倍)扩容
// 思路:旧表数据插入到新表中,释放旧表
if (_tables.size() == 0 || _num * 10 / _tables.size() >= 7)
{
HashTable<K, T, KeyOfT> newht;
size_t newsize = _tables.size() == 0 ? 10 : _tables.size() * 2;
newht._tables.resize(newsize);
for (size_t i = 0; i < _tables.size(); ++i)
{
if (_tables[i]._state == EXITS)
{
newht.Insert(_tables[i]._data);
}
}
_tables.swap(newht._tables);
}
线性探测优点
实现简单,易于理解
线性探测缺点
一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。
2. 二次探测
线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法为:Hi = (H0 + i^2) % m,或者Hi = (H0-i ^ 2)%m.其中:i = 1,2,3…,是通过散列函数Hash(x)对元素的关键码key进行计算得到的位置,m是表的大小。 对于2.1中如果要插入44,产生冲突,使用解决后的情况为:
代码表示
// 二次探测
// 计算d中的key在表中映射的位置
size_t start = koft(d) % _tables.size();
size_t index = start;
int i = 1;
while (_tables[index]._state == EXITS)
{
if (koft(_tables[index]._data) == koft(d))
{
return false;
}
ndex = start + i * i;
++i;
index %= _tables.size();
}
_tables[index]._data = d;
_tables[index]._state = EXITS;
_num++;
return true;
研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容。
因此:比散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。
2.4.2. 开散列
1. 开散列概念
开散列法又叫链地址法(拉链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。
从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。
2.开散列的实现
// 代码如下
template<class V>
struct HashBucketNode
{
HashBucketNode(const V& data)
: _pNext(nullptr), _data(data)
{}
HashBucketNode<V>* _pNext;
V _data;
};
// 本文所实现的哈希桶中key唯一的
template<class V>
class HashBucket
{
typedef HashBucketNode<V> Node;
typedef Node* PNode;
public:
HashBucket(size_t capacity = 3) : _size(0)
{
_ht.resize(GetNextPrime(capacity), nullptr);
}
// 哈希桶中的元素不能重复
PNode* Insert(const V& data)
{
// 确认是否需要扩容。。。
// _CheckCapacity();
// 1. 计算元素所在的桶号
size_t bucketNo = HashFunc(data);
// 2. 检测该元素是否在桶中
PNode pCur = _ht[bucketNo];
while (pCur)
{
if (pCur->_data == data)
return pCur;
pCur = pCur->_pNext;
}
// 3. 插入新元素
pCur = new Node(data);
pCur->_pNext = _ht[bucketNo];
_ht[bucketNo] = pCur;
_size++;
return pCur;
}
// 删除哈希桶中为data的元素(data不会重复),返回删除元素的下一个节点
PNode* Erase(const V& data)
{
size_t bucketNo = HashFunc(data);
PNode pCur = _ht[bucketNo];
PNode pPrev = nullptr, pRet = nullptr;
while (pCur)
{
if (pCur->_data == data)
{
if (pCur == _ht[bucketNo])
_ht[bucketNo] = pCur->_pNext;
else
pPrev->_pNext = pCur->_pNext;
pRet = pCur->_pNext;
delete pCur;
_size--;
return pRet;
}
}
return nullptr;
}
PNode* Find(const V& data);
size_t Size()const;
bool Empty()const;
void Clear();
bool BucketCount()const;
void Swap(HashBucket<V, HF>& ht;
~HashBucket();
private:
size_t HashFunc(const V& data)
{
return data%_ht.capacity();
}
private:
vector<PNode*> _ht;
size_t _size; // 哈希表中有效元素的个数
};
3. 开散列增容
桶的个数是一定的,随着元素的不断插入,每个桶中元素的个数不断增多,极端情况下,可能会导致一个桶中链表节点非常多,会影响的哈希表的性能,因此在一定条件下需要对哈希表进行增容。开散列最好的情况是:每个哈希桶中刚好挂一个节点,再继续插入元素时,每一次都会发生哈希冲突,因此,在元素个数刚好等于桶的个数时,可以给哈希表增容。
代码表示
void _CheckCapacity()
{
size_t bucketCount = BucketCount();
if (_size == bucketCount)
{
HashBucket<V, HF> newHt(bucketCount);
for (size_t bucketIdx = 0; bucketIdx < bucketCount; ++bucketIdx)
{
PNode pCur = _ht[bucketIdx];
while (pCur)
{
// 将该节点从原哈希表中拆出来
_ht[bucketIdx] = pCur->_pNext;
// 将该节点插入到新哈希表中
size_t bucketNo = newHt.HashFunc(pCur->_data);
pCur->_pNext = newHt._ht[bucketNo];
newHt._ht[bucketNo] = pCur;
pCur = _ht[bucketIdx];
}
}
newHt._size = _size;
this->Swap(newHt);
}
}
4. 开散列与闭散列比较
应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上:由于开地址法必须保持大量的空闲空间以确保搜索效率,如二次探查法要求装载因子a <= 0.7,而表项所占空间又比指针大的多,所以使用链地址法反而比开地址法节省存储空间.
3. 模拟实现
3.1. 哈希表的改造
模拟实现unordered_map与unordered_set需要如下步骤
1. 模板参数列表的改造
// K:关键码类型
// V: 不同容器V的类型不同,如果是unordered_map,V代表一个键值对,如果是unordered_set,V为K
// KeyOfValue: 因为V的类型不同,通过value取key的方式就不同,详细见unordered_map/set的实现
// HF: 哈希函数仿函数对象类型,哈希函数使用除留余数法,需要将Key转换为整形数字才能取模
template<class K, class V, class KeyOfValue, class HF = DefHashF<T>>
class HashBucket
2. 增加迭代器操作
3. 增加通过key获取value操作
注:上述两个操作会在具体代码中体现
3.2. unordered_map
代码实现
namespace my_unordered_map
{
template<class K, class V, class Hash = OPEN_HASH::_Hash<K>>
class unordered_map
{
struct MapKOfT
{
const K& operator()(const std::pair<K, V>& kv)
{
return kv.first;
}
};
public:
typedef typename HashTable<K, std::pair<K, V>, MapKOfT, Hash>::iterator iterator;
iterator begin(){ return _ht.begin(); }
iterator end(){ return _ht.end(); }
std::pair<iterator, bool> insert(const std::pair<K, V>& kv)
{ return _ht.Insert(kv); }
V& operator[](const K& key)
{
std::pair<iterator, bool> ret = _ht.Insert(make_pair(key, V()));
return ret.first->second;
}
private:
HashTable<K, std::pair<K, V>, MapKOfT, Hash> _ht;
};
}
3.3. unordered_set
具体实现与unordered_map
代码实现
namespace my_unordered_set
{
template<class K, class Hash = OPEN_HASH::_Hash<K>>
class unordered_set
{
private:
struct SetKOfT
{
const K& operator()(const K& k)
{
return k;
}
};
public:
typedef typename HashTable<K, K, SetKOfT, Hash>::iterator iterator;
iterator begin()
{
return _ht.begin();
}
iterator end()
{
return _ht.end();
}
std::pair<iterator, bool> insert(const K& k)
{
return _ht.Insert(k);
}
private:
HashTable<K, K, SetKOfT, Hash> _ht;
};
}
hashtable与unordered_map与unordered_set的模拟实现代码(github链接):代码传送门