- 博客(40)
- 收藏
- 关注
原创 深度学习周报(1.26~2.1)
本周主要学习了径向基函数的相关知识,了解了它的核心思想、常见类型以及它在数学、机器学习等领域的应用;其次,对 weatherbench 进行了使用尝试,主要是配置了对应的环境,为后续比较做好准备。本周首先学习了径向基函数的相关知识,包括其在数学、机器学习以及插值中的定义应用,下周考虑对其进行实战或接着学习克里金法;
2026-02-01 21:01:14
506
原创 深度学习周报(1.19~1.25)
本周首先学习了上周接触到的插值方法,了解了它的定义、方法以及对应的优缺点与应用场景,具体包括线性插值、多项式插值与反距离加权等;其次阅读了《WeatherBench: A benchmark data set for data-driven weather forecasting》这篇论文,了解了它的背景、方法论与创新点等。本周对于上周了解到的插值方法进行了学习,感觉多维插值中径向基函数与克里金两种方法后续还可以更深入地学习下。
2026-01-25 21:02:40
927
原创 深度学习周报(1.12~1.18)
本周首先利用代码梳理了 U-Net 的网络结构及弹性形变,了解了其实现细节与尺寸变换,同时认识了插值这一数据处理方法;其次,手动梳理了 Sinkhorn 算法的迭代过程,并利用代码对其进行了实现,同时了解了收敛容差这一参数的作用与选择策略。本周主要对上周学习的内容,即 U-Net 与 Sinkhorn 算法进行了梳理,更加深入了解了前者的网络结构与后者的实现,同时通过手动计算对 Sinkhorn 算法的迭代有了更清晰的认识。此外接触到了插值这种处理数据的方法,感觉下周可以拓展了解一下。%5Calpha。
2026-01-18 20:51:27
673
原创 深度学习周报(1.05~1.11)
本周首先阅读了 U-Net 的论文,了解了 U-Net 的背景、架构、创新点与优势,同时分析了它的局限性;其次学习了Sinkhorn 算法,拓展了最优传输问题的表示形式,了解了算法的目标、步骤、优缺点以及应用场景。总的来说,实验结果不仅定量证明了U-Net的卓越性能,还定性展示了其在保留细节和正确处理复杂拓扑结构方面的能力,为后续的医学图像分割研究设立了新的基准。但尽管 U-Net 取得了巨大成功,但冷静分析其局限性有助于我们理解后续研究的发展方向。U-Net 的一个明显局限是对计算资源的需求。
2026-01-11 20:57:44
663
1
原创 深度学习周报(25.12.29~26.1.4)
上面的KL散度、JS散度与总变分距离都是同一个“大家族”的特例,即 f-散度族(f-Divergences)。这是一类用于衡量两个概率分布之间差异的函数,它们都基于一个共同的数学形式。离散情况下:连续情况下:其中要求为凸函数,且并约定:1.;2.。它们(主要是前面学习的三种)与 Wasserstein 距离的主要对比如下:1. Wasserstein 距离与总变分距离都是度量,而KL散度与JS散度都只是散度;2. Wasserstein 距离连续且考虑几何依赖,而另三者均不连续与不考虑。
2026-01-04 21:04:36
1034
原创 深度学习周报(12.22~12.28)
本周首先学习了生成对抗网络(GAN)的核心思想、关键组件以及训练流程,了解了它的相关变体网络(如 DCGAN)及应用领域,并用代码梳理了其关键组件的结构与训练过程;其次,学习了Wasserstein距离的数学表示与常见用法,主要了解了一阶和二阶 Wasserstein 距离及它们之间的区别。本周主要学习了生成对抗网络和 Wasserstein 距离的相关知识。GAN 主要是两个神经网络互相博弈的想法感觉可以扩展学习和训练思路;
2025-12-28 21:00:00
1434
原创 深度学习周报(12.15~12.21)
本周首先基于上周对于 Kantorovich 松弛的学习,进一步学习了 Kantorovich 对偶问题,了解了其问题描述、数学表示以及对偶定理;其次利用代码对视觉 Transformer 的结构进行了梳理复现,了解了 MLP 扩展比率与截断正态分布等概念。可以发现,对偶性将物理世界的优化问题(如何移动物质)转化为经济世界的优化问题(如何定价)。在物理世界中,它本质上是一种集中式、命令型的资源配置模式,需要完全信息、强大算力和无摩擦的执行力来精确指挥每一单位物资的移动路径,以使全局运输成本最小化;
2025-12-21 20:53:57
640
原创 深度学习周报(12.8~12.14)
本周首先深入学习了上周接触的 Monge 问题与 Kantorovich 松弛,了解它们的问题描述、数学表示、局限与优势以及意义;其次,阅读了 Vision Transformer 的论文,了解了 ViT 产生的背景、采用的方法以及创新点;此外,拓展了解了刚性、紧性等性质概念。本周首先对 Monge 问题与 Kantorovich 松弛进行了进一步学习,除了接触得比较少的数学概念(如紧性)以外,比较重要的是学习到了新的思路,即在面对较难处理的问题时,可以适当放宽条件再进行推理;
2025-12-14 21:07:59
1012
4
原创 深度学习周报(12.1~12.7)
本周首先学习了最优传输的核心思想与部分应用,了解了蒙日问题与康托洛维奇松弛的思想与数学表示;其次学习了Grover算法,了解了其定义、算法步骤与几何表示,还利用代码进行了实现;同时还拓展了无结构搜索问题、Oracle黑盒与单位算子等概念。Grover算法也被称为量子搜索算法,专门用于处理无结构的搜索问题。p.s. 无结构搜索问题,即在一个没有任何辅助结构(如排序)的数据库中搜索一个特定的元素。
2025-12-07 20:52:35
600
原创 深度学习周报(11.24~11.30)
本周首先学习了高效注意力机制,了解了几种实现路径的思想与具体方法,包括稀疏注意力、线性注意力等;其次了解了布尔可满足性问题的定义与重要性;最后回顾了量子三大基本逻辑门的计算,并进行了代码实现。本周的学习主要属于过渡期,一方面通过对高效注意力机制的学习,回顾了前面知识的同时也为后面阅读论文,进一步学习transfomer的变体与改进打基础;另一方面,通过量子基础逻辑门的实现巩固前面所学,同时了解布尔可满足性问题,方便后续Grover算法的学习。
2025-11-30 21:01:09
776
原创 深度学习周报(11.17~11.23)
本周首先对各类任务的评估指标进行了整理,在厘清部分概念的同时接触了新的评估指标,如MAP、BLEU等;其次通过论文学习了T5模型的核心思想、实验探索过程与评估结果,了解了其思想、方法上的创新点。由于之前读其他论文并尝试复现时,接触到了不是很熟悉的评估指标,所以本周首先对此进行了整理,希望能对后续的学习有所帮助;其次学习了T5模型,感觉论文整体思路在学习上很值得参考,找好目标,通过实验选择各模块的方法,再从其中思考创新以更好地达到目标;
2025-11-23 20:38:23
889
1
原创 深度学习周报(11.10~11.16)
本周首先总结了前面阅读的两篇文献,对比了GPT-1与GPT-2的各方面差异,同时对GELU与ReLu激活函数的区别、零样本任务以及BPE等知识点进行了拓展;其次梳理了shor算法的代码,包括其经典实现与量子实现,深入理解了其过程。两者在核心思想与目标、模型架构与训练过程、执行方式、能力与影响上都有所不同。在核心思想与目标上,GPT-1 明确知道要解决的是什么具体任务(任务感知),一开始通过预训练得到一个强大的初始化模型,然后通过微调来适配具体任务;
2025-11-16 20:45:00
781
1
原创 深度学习周报(11.3~11.9)
本周首先阅读了GPT-2的文献,对其背景、方法论与创新点等有了一个大概的了解,下周打算就gpt这两篇论文中不太了解的地方进行总结与回顾,比较两篇文章的不同与改进;量子部分主要学习了shor算法,对于其后面量子傅里叶变换的应用、测量以及后续处理过程还是有些不清晰的地方,下周可以继续学习。
2025-11-09 20:59:22
1061
原创 深度学习周报(10.27~11.2)
本周首先补充学习了上周论文的代码,了解了其一些具体实现细节,对 transformer 有了进一步的认识;其次学习了量子相位估计算法,了解了其电路结构与具体步骤,认识了相位反冲、本征向量、逆量子傅里叶变换等概念。文章训练了一个仅包含12层解码器的 transformer , transformer 块的代码与前面梳理其架构类似,故代码在此不再赘述。
2025-11-02 21:02:28
892
1
原创 深度学习周报(10.20~10.26)
本周首先阅读了《Improving Language Understanding by Generative Pre-Training》这篇论文,了解了其背景、方法与实验结果;其次回顾了傅里叶变换的知识,并在离散傅里叶变换的基础上学习了量子傅里叶变换,了解了其电路结构与具体步骤,认识了受控旋转门,并对哈达玛门有了更进一步的了解。本周首先阅读了GPT的奠基性论文,后续考虑对该系列论文进行深入了解,思考之间的关联,改进以及不足;
2025-10-26 20:58:24
977
1
原创 深度学习周报(10.13~10.19)
本周首先了解了Transformer的三大分支;其次通过阅读论文对其中的Encoder-only分支进行了了解,学习了BERT模型的方法、创新与优势所在;最后学习了量子计算中的simon算法,了解了其方法步骤以及相对经典计算的优越性。Transformer家族中最重要的三大架构分支分别是 Encoder-only、Decoder-only 与 Encoder-Decoder。
2025-10-19 20:06:49
944
原创 深度学习周报(10.6~10.12)
本周首先对位置编码进行了学习,了解了位置编码的作用与类型;其次通过代码对Transformer的架构与注意力机制等进行了梳理;最后了解了量子门的通用性,学习了Deutsch算法,了解了其思想、步骤与推广算法Deutsch-Jozsa。本周Transformer部分先学习了位置编码,然后利用代码对Transformer的整体架构进行了梳理,学习到了新东西,比如说多头的重塑还有掩码的使用之类,对Transformer有了更深的了解。
2025-10-12 20:48:20
1003
原创 深度学习周报(9.29~10.5)
本周首先了解了QKV的具体推导过程;其次学习了量子传输的相关知识,主要包括关键点、过程与优缺等,同时对共享纠缠对的方法做了补充;最后入门了量子计算的基础代码,了解了其运行过程与一些常用的函数模块,如QuantumCircuit和BasicSimulator等。本周主要基于上周的学习,对QKV的推导与量子传输进行了了解,同时梳理了前面接触的量子计算入门代码。
2025-10-05 20:22:46
1026
原创 深度学习周报(9.22~9.28)
本周首先学习了注意力机制的相关知识,了解了注意力机制解决的问题与大致流程,学习了注意力分数的几种计算方法,重点掌握了Transformer中注意力机制的运用,包括自注意力机制,带掩码的多头自注意力机制和交叉注意力等;其次,学习了量子测量与超密编码,了解了贝尔态与量子纠缠,补充了关于正交基的知识。这周主要学习了注意力机制、量子测量与超密编码,学习整体状态较上周好,偶尔能联系前面的知识进行理解。下周打算继续深入Transformer,并学习量子传输的部分。
2025-09-28 20:33:58
1057
原创 深度学习周报(9.15~9.21)
本周首先初步了解了transformer的部分背景与基础,主要包括Seq2Seq模型、编码器与解码器的结构,AT与NAT的区别等;其次学习了量子计算的基本定义,包括狄拉克符号及其运算、布洛赫球、常见的单量子比特门与复合系统等。在量子力学和量子信息科学中,量子态(Quantum State)是描述一个量子系统物理状态的数学对象。它是量子理论的核心概念之一,用于预测系统在各种测量下的行为和结果的概率分布。它通常由一个位于复数希尔伯特空间(Hilbert Space)中的单位向量表示。
2025-09-21 19:39:16
1164
原创 深度学习周报(9.8~9.14)
本周首先总结了LSTM、Bi-LSTM与GRU的区别与优缺点,对比了三者实战的代码与效果,还另外拓展了一些循环神经网络变体(包括窥视孔LSTM、耦合门LSTM与SRU)。其次,初步了解了量子计算的相关知识,包括量子比特、量子纠缠、量子干涉等,学习了量子比特与经典比特的区别、量子计算的经典算法、面临的挑战、主流技术路线与部分应用场景。回顾上周学习的LSTM、Bi-LSTM与GRU三种网络结构。
2025-09-14 20:44:22
641
原创 深度学习周报(9.1~9.7)
本周主要学习了LSTM的相关内容,包括LSTM的核心结构、优势与局限性以及变体网络,重点了解了遗忘门、输入门与输出门的计算、细胞状态的变化过程、还有双向LSTM和GRU相较LSTM的相关改进与优缺点。此外,本周还对基于LSTM的情感分类项目进行了复现,在加深对LSTM了解的同时,拓展了关于独热向量,贝叶斯优化、超参数自动搜索等的认识。#模型定义#Embedding的作用是将离散的符号(如单词、字符、类别)映射为连续的、低维稠密的向量表示。
2025-09-07 21:01:12
841
2
原创 深度学习周报(8.25~8.31)
本周主要学习了循环神经网络的学习意义与基础知识,重点了解了RNN循环连接的核心思想、前向传播与反向传播过程,认识了其优缺点与应用场景,对它的变体结构也进行了拓展,最后还通过代码加深了对循环神经网络结构以及使用的了解。本周主要了解了RNN的相关知识,包括学习意义、传播过程以及变体等,并通过代码加深了对RNN网络的理解。下周计划深入学习LSTM(长短期记忆网络)的相关知识。
2025-08-31 20:29:49
860
原创 深度学习周报(8.18~8.24)
本周首先通过代码加深了对CNN的基本网络结构(卷积+激活+池化+全连接)的理解,其次学习了CNN经典网络架构(包括LeNet-5、AlexNet、ResNet等)的结构特点及其演变过程,并动手实现了部分基础模块,有效巩固了对CNN整体架构与设计思想的认识。本周比较注重理论和代码的结合学习,内容比较多,感觉对卷积神经网络的经典架构都有了一个大致的认识,希望在后续可以通过实战加深对部分经典网络的理解。下周可能会进行RNN(循环神经网络)的学习。H%28x%29x。
2025-08-24 18:33:10
1171
原创 深度学习周报(8.11~8.17)
本周主要学习了卷积神经网络(CNN)的相关知识,包括概念、基本架构与应用领域等知识,了解了CNN利用其结构高效地从图像等网格化数据中自动提取多层次特征的方法,重点学习了卷积与池化两大核心操作,认识了卷积背后的设计思想,理解了卷积核的使用与计算过程,同时还掌握了池化操作的类型(如最大池化、平均池化)、功能及计算方法。
2025-08-17 09:48:05
913
原创 深度学习周报(8.4~8.10)
本周首先进行了PCA降维的实战训练,对比了降维前后的数据散点图。其次,了解了其他的降维算法,如t-SNE和LLE等,学习了它们的原理与优缺点。最后,认识了异常检测的概念与应用,在回顾正态分布的基础上学习了异常检测算法的推导过程,了解了它的评估方法以及与监督学习的不同之处。本周通过对PCA的代码训练,对PCA有了更加清晰的认识,并且总结了其他常见的降维算法。除此之外,对异常检测算法进行了初步的了解,学习了其概念、算法与评估等知识点。
2025-08-10 18:45:53
1081
原创 深度学习周报(7.28~8.3)
本周主要跟着吴恩达老师的机器学习系列课程学习了无监督学习及其主要的两类算法。其一是聚类,主要了解了k-means算法,包括随机初始化、优化目标与聚类数量的选择。其二是降维,主要了解了主成分分析(PCA),包括降维目标,PCA算法与应用建议等。本周主要学习了k-means算法与PCA两个无监督学习的重要算法,学习了它们的原理,但感觉对PCA的了解还有点模糊。下周计划首先通过代码实践或者具体理清对PCA的理解,然后开始异常检测部分的学习。
2025-08-03 19:59:59
1090
原创 深度学习周报(7.21~7.27)
本周首先跟着吴恩达老师的机器学习系列课程了解了SVM的使用建议,包括如何使用SVM软件包、核函数的基础与其他类型,并且对比了SVM与逻辑回归的使用场景。其次,通过代码实现了利用SVM进行的鸢尾花数据分类任务,了解了任务全过程,另外还学习了利用代码调整数据展示,创建新特征以及生成并可视化混淆矩阵的方法。本周主要对上周学习的SVM算法进行了代码上的练习,同时对核函数的相关知识进行了拓展了解,另外,基于特征数据与样本数据的特点,确定了SVM与逻辑回归的使用场景。总体为后续学习其他算法的数学原理与代码夯实了基础。
2025-07-27 15:00:00
636
原创 深度学习周报(7.14~7.20)
本周主要跟着吴恩达老师的课程学习了支持向量机(SVM)这一监督学习算法,掌握了SVM代价函数、大间隔分类器以及核函数的相关知识。其中,SVM代价函数是从逻辑回归的代价函数演变而来;大间隔分类器是由于SVM算法通过最大化决策边界的间隔来提升分类性能而得名;核函数主要用于处理非线性问题。本周主要学习了SVM的相关知识,了解了它从逻辑回归演变而来的过程、被叫作大间隔分类器的直观原因与数学理解以及它处理非线性问题的方法,为下周SVM算法的实际应用奠定了基础。
2025-07-20 14:41:59
713
原创 深度学习周报(7.7~7.13)
本周首先跟着吴恩达老师的课程学习了机器学习系统设计的相关知识,重点了解了不对称性分类的误差评估与权衡精确度和召回率的方法,并且对构建机器学习系统的步骤进行了总结;其次跟着pytorch深度学习快速入门教程学习了利用pytorch进行数据加载的方法,重点掌握了Dataset与Dataloader两个核心类的使用。通过本周的学习,我明确了机器学习系统设计的步骤,了解了对于偏斜类问题时应使用精确率、召回率或F1分数进行评估。
2025-07-13 09:15:50
618
原创 深度学习周报(6.30~7.6)
本周首先了解了深度学习中的梯度消失与梯度爆炸问题及其成因,包括激活函数、权重初始化和网络结构的影响,并提出了解决方法如ReLU激活函数、合理初始化和梯度裁剪;其次跟着吴恩达老师的课程学习了评估与调试机器学习的方法,包括模型评估、偏差与方差分析、学习曲线的应用等内容。本周首先更加全面地认识了梯度消失与梯度爆炸,其次了解了评估与调试机器学习算法的理论方法,最后对前面的部分知识有了更加深刻的理解,比如数据集的划分与作用、高偏差与高方差对应的欠拟合与过拟合。
2025-07-06 18:52:10
1185
原创 深度学习周报(6.23~6.29)
本周主要围绕神经网络的代价函数与反向传播算法两个部分进行了深入学习。其中,代价函数用于衡量模型预测值与真实值之间的误差,而反向传播算法则是通过链式法则将误差从输出层逐层传递回输入层,进而计算每一层参数的梯度,并利用优化算法进行参数更新。另外厘清了部分较为模糊的概念,例如代价函数与损失函数。代价函数用于衡量模型预测值与真实值之间的差异。其本质是一个标量函数,用于量化模型预测结果的“好坏”。代价函数的最小值所对应的模型参数通常为最优的模型参数。因此,在训练过程中,我们的目标是最小化这个代价函数。
2025-06-29 18:00:00
651
原创 深度学习周报(6.16~6.22)
本周跟着吴恩达老师的课程学习了神经网路的训练过程,重点了解了神经网络代价函数的计算与反向传播算法,并且学习了梯度检测与随机初始化的方法与作用。
2025-06-22 17:50:58
863
原创 深度学习周报(6.9~6.15)
本周首先回顾了上周过拟合的成因与解决方法,并通过查阅相关资料对其进行了补充;其次跟着吴恩达老师的课程初步学习了神经网络的相关知识,包括神经元、激活函数、前向传播等核心概念;最后,了解了利用神经网络解决多类别份分类问题的方法。This week, I started by reviewing the causes and solutions for overfitting discussed in the previous week, and further enriched my understanding
2025-06-15 18:00:00
789
原创 深度学习周报(6.2-6.8)
本周首先回顾了上周logistic回归的梯度下降过程,并进行了手动推导;其次跟着吴恩达老师的课程学习了过拟合的相关概念、原因及解决方法,了解了正则化及其在线性回归和逻辑回归中的使用方法。
2025-06-07 20:00:00
665
原创 深度学习周报(5.26-6.1)
本周跟着吴恩达老师的机器学习系列课程学习了机器学习中的分类问题,重点掌握了逻辑回归这一经典二分类模型的基本原理与实现方法。理解了sigmoid函数、代价函数和决策边界等核心概念,并通过代码实现了肿瘤类别的分类任务。同时了解了常用的高级优化算法及其优缺点,并尝试在模型训练中进行调用。最后初步学习了如何将二分类方法扩展到多类别分类问题,为后续深入学习更复杂的分类模型打下了基础。This week, I studied the concept of classification in Andrew Ng's ma
2025-05-31 10:00:00
1094
原创 深度学习周报--第四周
本周跟着吴恩达老师的机器学习系列课程学习了多元线性回归的相关知识,了解了特征缩放与正规方程的原理及公式,用两种方法完成了多元线性回归的代码实现,对特征缩放的作用与正规方程有了更加清楚的了解。
2025-05-24 10:00:00
1488
原创 深度学习周报--第三周
矩阵是指由数字组成的矩形阵列,写在方括号内,通常由大写字母表示。矩阵维度指的是矩阵中行与列的数量,通常由“行数列数”的形式表示。假设A是一个mn的矩阵,那么A通常包括m行n列:本周跟着吴恩达老师的机器学习系列课程回顾了矩阵的定义及基本运算,并进行了代码实现,对上周单变量线性回归的过程有了更深刻的理解。
2025-05-17 10:00:00
1657
原创 深度学习周报--第二周
本周跟着吴恩达老师的机器学习系列课程学习了机器学习的线性回归部分,完成了单变量线性回归的代码实现,对代价函数的作用与梯度下降过程有了更加明确的了解和深刻的认识。
2025-05-10 18:00:00
740
原创 深度学习周报--第一周
总的来说,机器学习有两种定义。一种由开发了跳棋程序的Arthur Samuel于1959年提出,他认为机器学习是在没有显式编程的情况下,能使计算机具有学习能力的研究领域。另一种则更为现代,由Tom Mitchell于1998年提出,他认为机器学习主要指计算机程序从经验E中学习解决某一任务T进行某一性能度量P,通过P测定在T上的表现因经验E而提高。本周跟着吴恩达老师的机器学习系列课程学习了机器学习的基础部分,虽然以前有过相关的学习,但对机器学习的分类与应用等有了更加清晰和明确的了解。
2025-05-03 10:05:43
979
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅