Jacobi Seidel Sor --Python

该博客详细介绍了使用雅可比法、赛德尔法和SOR(Successive Over-Relaxation)法进行线性方程组求解的迭代过程。通过迭代计算,当各变量的差值小于指定阈值时停止运算,并输出最终结果。这些方法在数值计算中被广泛应用。
摘要由CSDN通过智能技术生成

def jacobi(x1,x2,x3,count=1):
	y1=-2*x2 - 3*x3 + 6
	y2=-4/5*x1 - 6/5*x3 + 3.2
	y3=-7/9*x1 - 8/9*x2 + 24/9

	if abs(y1-x1)<0.00001 and abs(y2-x2)<0.00001 and abs(y3-x3)<0.00001:
		print('最终的计算结果为%s、%s和%s' %(y1,y2,y3))
	else:
		if count<10:	
			print('第%s次迭代的计算结果为%s、%s和%s' %(count,y1,y2,y3))
		x1,x2,x3,count = y1,y2,y3,count+1
		return jacobi(x1,x2,x3,count)
def seidel(x1,x2,x3,count=1):
	y1=(-1/8)*x2 + 1/4*x3 + 9/8
	y2=3/10*y1 + 1/10*x3 - 19/10
	y3=(-1/4)*y1 + 1/10*y2 + 3.6

	if abs(y1-x1)<0.00001 and abs(y2-x2)<0.00001 and abs(y3-x3)<0.00001:
		print('最终的计算结果为%s、%s和%s' %(y1,y2,y3))
	else:
		print('第%s次迭代的计算结果为%s、%s和%s' %(count,y1,y2,y3))
		x1,x2,x3,count = y1,y2,y3,count+1
		return seidel(x1,x2,x3,count)
def sor(x1,x2,x3,w,count=1):
	y1=(1-w)*x1 + w*((-1/8)*x2 + 1/4*x3 + 9/8)
	y2=(1-w)*x2 + w*(3/10*y1 + 1/10*x3 - 19/10)
	y3=(1-w)*x3 + w*((-1/4)*y1 + 1/10*y2 + 3.6)

	if abs(y1-x1)<0.00001 and abs(y2-x2)<0.00001 and abs(y3-x3)<0.00001:
		print('最终的计算结果为%s、%s和%s' %(y1,y2,y3))
	else:
		print('第%s次迭代的计算结果为%s、%s和%s' %(count,y1,y2,y3))
		x1,x2,x3,count = y1,y2,y3,count+1
		return sor(x1,x2,x3,w,count)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江水西流...

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值