<AVL树>——《C++高阶》

目录

1.AVL树

1.1AVL树的概念

1.2 AVL树节点的定义

1.3 AVL树的插入

1.4 AVL树的旋转

1. 新节点插入较高左子树的左侧---左左:右单旋​

 2. 新节点插入较高右子树的右侧---右右:左单旋​

3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋​

4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋​

 1.5 AVL树的验证

1.6 AVL树的删除(了解)

1.7 AVL树的性能

2.AVL树的实现:

2.1功能函数:

(1)定义AVL树的基本结构:​

(2)Insert函数以及平衡因子bf的调整:​

(3)左单旋RotateL:​

(4)右单旋RotateR:​

(5)左右双旋RotateLR:​ 

(6)右左双旋RotateRL:​

(7)遍历(递归版):

(8)求树的高度:​

(9)判断是否为平衡二叉树: 

(10)测试用例:​

2.2完整源码:

(1)AVLTree.h:

(2)test.cpp:

2.3总结:

后记:●由于作者水平有限,文章难免存在谬误之处,敬请读者斧正,俚语成篇,恳望指教!

                                                                       ——By 作者:新晓·故知


 

1.AVL树

1.1AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii 和E.M.Landis在1962年 发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的 绝对值 不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均 搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
它的左右子树都是AVL树
左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在
O(log_2 n),搜索时间复杂度O(log_2 n)

1.2 AVL树节点的定义

AVL树节点的定义:
template<class T>
struct AVLTreeNode
{
	AVLTreeNode(const T& data)
		: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
		, _data(data), _bf(0)
	{}
	AVLTreeNode<T>* _pLeft;   // 该节点的左孩子
	AVLTreeNode<T>* _pRight;  // 该节点的右孩子
	AVLTreeNode<T>* _pParent; // 该节点的双亲
	T _data;
	int _bf;                  // 该节点的平衡因子
};

 1.3 AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么
AVL树的插入过程可以分为两步:
1. 按照二叉搜索树的方式插入新节点
2. 调整节点的平衡因子
bool Insert(const T& data) 
{
	// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
	// ...

	// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树
		//   的平衡性

	 /*
	 pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
	 的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
	  1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
	  2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
	  
	 此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
	  1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
	成0,此时满足
	     AVL树的性质,插入成功
	  2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
	新成正负1,此
	     时以pParent为根的树的高度增加,需要继续向上更新
	  3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
	行旋转处理
	 */
		while (pParent)
		{
			// 更新双亲的平衡因子
			if (pCur == pParent->_pLeft)
				pParent->_bf--;
			else
				pParent->_bf++;
			// 更新后检测双亲的平衡因子
			if (0 == pParent->_bf)
			{
				break;
			}
			else if (1 == pParent->_bf || -1 == pParent->_bf)
			{
				// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲
				为根的二叉树
					// 的高度增加了一层,因此需要继续向上调整
					pCur = pParent;
				pParent = pCur->_pParent;
			}
			else
			{
				// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
				// 为根的树进行旋转处理
				if (2 == pParent->_bf)
				{
					// ...
				}
				else
				{
					// ...
				}
			}
		}
	return true;
}

1.4 AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

1. 新节点插入较高左子树的左侧---左左:右单旋

/*
  上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树增加了一层,
  导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层, 即将左子树往上提,
  这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有 右子树,右子树根的值一定大于30,小于60,
  只能将其放在60的左子树,旋转完成后,更新节点 的平衡因子即可。在旋转过程中,
  有以下几种情况需要考虑: 
  1. 30节点的右孩子可能存在,也可能不存在 
  2. 60可能是根节点,也可能是子树 
			如果是根节点,旋转完成后,要更新根节点 如果是子树,
			可能是某个节点的左子树,也可能是右子树 
  同学们再此处可举一些详细的例子进行画图,考虑各种情况,加深旋转的理解 */
void _RotateR(PNode pParent) 
{ 
	// pSubL: pParent的左孩子 
	// pSubLR: pParent左孩子的右孩子,注意:该
	PNode pSubL = pParent->_pLeft; 
	PNode pSubLR = pSubL->_pRight; 
	// 旋转完成之后,30的右孩子作为双亲的左孩子 
	pParent->_pLeft = pSubLR; 
	// 如果30的左孩子的右孩子存在,更新亲双亲 
	if(pSubLR)
		pSubLR->_pParent = pParent; 
	// 60 作为 30的右孩子
	pSubL->_pRight = pParent;

	// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
	PNode pPParent = pParent->_pParent;

	// 更新60的双亲
	pParent->_pParent = pSubL;

	// 更新30的双亲
	pSubL->_pParent = pPParent;
	// 如果60是根节点,根新指向根节点的指针
	if (NULL == pPParent)
	{
		_pRoot = pSubL;
		pSubL->_pParent = NULL;
	}
	else
	{
		// 如果60是子树,可能是其双亲的左子树,也可能是右子树
		if (pPParent->_pLeft == pParent)
			pPParent->_pLeft = pSubL;
		else
			pPParent->_pRight = pSubL;
	}
	// 根据调整后的结构更新部分节点的平衡因子
	pParent->_bf = pSubL->_bf = 0;
}

 2. 新节点插入较高右子树的右侧---右右:左单旋

实现及情况考虑可参考右单旋。

3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋

将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再
考虑平衡因子的更新。
// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
void _RotateLR(PNode pParent) 
{
	PNode pSubL = pParent->_pLeft;
	PNode pSubLR = pSubL->_pRight;

	// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节
	点的平衡因子
		int bf = pSubLR->_bf;

	// 先对30进行左单旋
	_RotateL(pParent->_pLeft);

	// 再对90进行右单旋
	_RotateR(pParent);
	if (1 == bf)
		pSubL->_bf = -1;
	else if (-1 == bf)
		pParent->_bf = 1;
}

4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋

参考右左双旋。
总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑
1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
当pSubR的平衡因子为1时,执行左单旋
当pSubR的平衡因子为-1时,执行右左双旋
2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
  • 当pSubL的平衡因子为-1是,执行右单旋
  • 当pSubL的平衡因子为1时,执行左右双旋
旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

 1.5 AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:
1. 验证其为二叉搜索树
如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
2. 验证其为平衡树
  • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确

int _Height(PNode pRoot); 
bool _IsBalanceTree(PNode pRoot) 
{ 
	// 空树也是AVL树 
	if (nullptr == pRoot) return true; 
	// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差 
	int leftHeight = _Height(pRoot->_pLeft); 
	int rightHeight = _Height(pRoot->_pRight);
	int diff = rightHeight - leftHeight;
	// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
    // pRoot平衡因子的绝对值超过1,则一定不是AVL树
	if (diff != pRoot->_bf || (diff > 1 || diff < -1))
		return false;
	// pRoot的左和右如果都是AVL树,则该树一定是AVL树
	return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot - > _pRight);
}
3. 验证用例
结合上述代码按照以下的数据次序,自己动手画AVL树的创建过程,验证代码
是否有漏洞。
  • 常规场景1
      {16, 3, 7, 11, 9, 26, 18, 14, 15}
  • 特殊场景2
      {4, 2, 6, 1, 3, 5, 15, 7, 16, 14}

1.6 AVL树的删除(了解)

因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不 错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。
具体实现可参考《算法导论》或《数据结构-用面向对象方法与C++描述》殷人昆版。

1.7 AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这 样可以保证查询时高效的时间复杂度,即$log_2 (N)$。但是如果要对AVL树做一些结构修改的操 作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时, 有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数 据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

2.AVL树的实现:

通过功能函数的模块化,然后进行封装,实现AVL的数据插入、遍历、树的高度求解、树的平衡判断。在插入数据的过程中,会涉及到树的结构的调整,这就需要借助平衡因子使得调整更加方便。

2.1功能函数:

(1)定义AVL树的基本结构:

(2)Insert函数以及平衡因子bf的调整: (3)左单旋RotateL:

(4)右单旋RotateR: 

(5)左右双旋RotateLR: 

(6)右左双旋RotateRL: (7)遍历(递归版):

 

(8)求树的高度:

 

(9)判断是否为平衡二叉树: 

(10)测试用例: 

 

2.2完整源码:

(1)AVLTree.h:

#pragma once
#include<iostream>
#include<vector>
#include<queue>
#include<time.h>
#include<set>
#include<map>
#include<string>
#include<cassert>
using namespace std;

template<class K,class V>
struct AVLTreeNode
{
	pair<K, V> _kv;     //key<=>(pair*)->first   value<=>(pair*)->second
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;

	int _bf; //balance factor  这里定义成右子树-左子树
	//AVL并无强制规定设计平衡因子,这里选择使用,方便控制平衡

	AVLTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
	{}
};

template<class K,class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	//Find
	//Erase 
	//插入数据
	bool Insert(const pair<K, V>& kv)
	{
		//1.先按照搜索树的规则插入数据
		//2.判断是否遵循平衡规则,若违反,就旋转进行调整
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_bf = 0;
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}

		cur->_parent = parent;
		//更新平衡因子:
		//插入新结点后:
		//1.树的高度层次增加,要一直更新到根结点(_root)的bf
		//2.树的高度不变,只更新当前的parent的bf,就更新完成
		//3.更新完成后,若违反规则,处理旋转
		//注:更新bf,parent和cur也会更新
		//插入结点后,平衡因子的判断、更新
		while (parent) 
		{
			//当前新插入这个结点的parent一定会更新,后面的需要进行判断
			if (cur == parent->_right)
			{
				parent->_bf++;
			}
			else
			{
				parent->_bf--;
			}

			// 是否继续更新?
			if (parent->_bf == 0)      //原来的bf:1 or -1  -> 0  插入节点填上矮的那边
			{
				// 高度不变,更新结束
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1) 
			{
				// 原来的bf:0  -> 1 或 -1  插入节点导致一边变高了
				// 子树的高度变了,继续更新,这里更新后,parent也变了,后续是否更新要进行判断
				cur = cur->_parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)  
			{
				// -1 or 1  -> 2 或 -2     插入节点导致本来高一边又变高了
				// 子树不平衡 -- 需要旋转处理
				if (parent->_bf == 2 && cur->_bf == 1)        // 左单旋
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == -1) // 右单旋
				{
					RotateR(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)  // 左右双旋
				{
					RotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1) // 右左双旋
				{
					RotateRL(parent);
				}

				break;
			}
			else
			{
				// 插入之前AVL就存在不平衡子树,|平衡因子| >= 2的节点
				assert(false);
			}

		}
		return true;
	}
private:
	//1.右边高,向左单旋转
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		Node* ppNode = parent->_parent;

		subR->_left = parent;
		parent->_parent = subR;

		if (parent == _root)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (parent == ppNode->_left)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}

			subR->_parent = ppNode;
		}
		// 更新平衡因子
		parent->_bf = 0;
		subR->_bf = 0;
	}
	//2.左边高,向右单旋转
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* ppNode = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}
			subL->_parent = ppNode;
		}

		subL->_bf = parent->_bf = 0;
		
	}
	//3.左右双旋
	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);

		// 更新平衡因子
		if (bf == 0)
		{
			parent->_bf = 0;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else if (bf == 1)
		{
			parent->_bf = 0;
			subL->_bf = -1;
			subLR->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 1;
			subL->_bf = 0;
			subLR->_bf = 0;
		}
		else
		{
			// subLR->_bf旋转前就有问题
			assert(false);
		}
	}
	//4.右左双旋
	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);

		if (bf == 0)
		{
			subRL->_bf = 0;
			parent->_bf = 0;
			subR->_bf = 0;
		}
		else if (bf == 1)
		{
			subRL->_bf = 0;
			parent->_bf = -1;
			subR->_bf = 0;
		}
		else if (bf == -1)
		{
			subRL->_bf = 0;
			parent->_bf = 0;
			subR->_bf = 1;
		}
		else
		{
			// subLR->_bf旋转前就有问题
			assert(false);
		}
	}
	//中序遍历(递归版)
	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;

		_InOrder(root->_left);
		cout << root->_kv.first << " ";
		_InOrder(root->_right);
	}
	//前序遍历(递归版)
	void _PrevOrder(Node* root)
	{
		if (root == nullptr)
			return;

		cout << root->_kv.first << " ";
		_PrevOrder(root->_left);
		_PrevOrder(root->_right);
	}
	//后序遍历(递归版)
	void _PostOrder(Node* root)
	{
		if (root == nullptr)
			return;

		_PostOrder(root->_left);
		_PostOrder(root->_right);
		cout << root->_kv.first << " ";

	}
	//求树的高度
	int _Height(Node* root)
	{
		if (root == nullptr)
			return 0;

		int lh = _Height(root->_left);
		int rh = _Height(root->_right);

		return lh > rh ? lh + 1 : rh + 1;
	}
	//判断是否为平衡树
	bool _IsBalanceTree(Node* root)
	{
		// 空树也是AVL树
		if (nullptr == root)
			return true;

		// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		int diff = rightHeight - leftHeight;

		// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
		// pRoot平衡因子的绝对值超过1,则一定不是AVL树
		if (abs(diff) >= 2)
		{
			cout << root->_kv.first << "节点平衡因子异常!" << endl;
			return false;
		}

		if (diff != root->_bf)
		{
			cout << root->_kv.first << "节点平衡因子不符合实际!" << endl;
			return false;
		}

		// pRoot的左和右如果都是AVL树,则该树一定是AVL树
		return _IsBalanceTree(root->_left)
			&& _IsBalanceTree(root->_right);
	}
public:
	//1.中序遍历(递归版)
	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}
	//2.前序遍历(递归版)
	void PrevOrder()
	{
		_PrevOrder(_root);
		cout << endl;
	}
	//3.后序序遍历(递归版)
	void PostOrder()
	{
		_PostOrder(_root);
		cout << endl;
	}
	//4.层序遍历
	vector<vector<int>> levelOrder()
	{
		vector<vector<int>> vv;
		if (_root == nullptr)
			return vv;

		queue<Node*> q;
		int levelSize = 1;
		q.push(_root);

		while (!q.empty())
		{
			// levelSize控制一层一层出
			vector<int> levelV;
			while (levelSize--)
			{
				Node* front = q.front();
				q.pop();
				levelV.push_back(front->_kv.first);
				if (front->_left)
					q.push(front->_left);

				if (front->_right)
					q.push(front->_right);
			}
			vv.push_back(levelV);
			for (auto e : levelV)
			{
				cout << e << " ";
			}
			cout << endl;

			// 上一层出完,下一层就都进队列
			levelSize = q.size();
		}

		return vv;
	}

	bool IsBalanceTree()
	{
		return _IsBalanceTree(_root);
	}

	int Height()
	{
		return _Height(_root);
	}
private:
	Node* _root = nullptr;
};

(2)test.cpp:

#include"AVLTree.h"
void TestAVLTree1()
{
	AVLTree<int, int> t;
	t.Insert(make_pair(1, 1));
	t.Insert(make_pair(2, 2));
	t.Insert(make_pair(4, 3));
	t.Insert(make_pair(4, 4));
	
}
void TestAVLTree2()
{
	int a[] = { 5,3,7,1,4,6,8,0,2,9 };
	AVLTree<int, int> t;
	for (auto e : a)
	{
		t.Insert(make_pair(e, e));
	}
	cout << endl;
	t.levelOrder();
	t.Insert(make_pair(10,10));
	t.Insert(make_pair(11,11));
	t.levelOrder();

}
void TestAVLTree3()
{
	//使用随机值测试
	const size_t N = 100;
	vector<int> v;
	v.reserve(N);
	srand(time(0));
	for (size_t i = 0; i < N; ++i)
	{
		v.push_back(rand());
	}

	AVLTree<int, int> t;
	for (auto e : v)
	{
		t.Insert(make_pair(e, e));
	}

	t.levelOrder();
	cout << endl;
}
void TestAVLTree4()
{

	//使用有序测试
	const size_t N = 20;  //测试N个数据
	vector<int> v;
	v.reserve(N);
	srand(time(0));
	for (size_t i = 0; i < N; ++i)
	{
		//v.push_back(rand());
		v.push_back(i);
	}

	AVLTree<int, int> t;
	for (auto e : v)
	{
		t.Insert(make_pair(e, e));
	}

	//t.levelOrder();
	//t.InOrder();
	//t.PrevOrder();
	//t.PostOrder();
	cout << "是否平衡?(返回值1代表是,返回值0代表不是):" << t.IsBalanceTree() << endl;
	cout << "高度:" << t.Height() << endl;
	cout << endl;
}
void TestAVLTree5()
{
	int a[] = { 5,3,7,1,4,6,8,0,2,9 };
	//int a[] = {0,1,2,3,4,5,6,7,8,9 };
	//int a[] = { 1,1,1,1,1,1,1,1,1 };

	AVLTree<int, int> t;
	for (auto e : a)
	{
		t.Insert(make_pair(e, e));
	}
	
	t.levelOrder();
	cout << "是否为平衡树?(1:是  0:不是):" << t.IsBalanceTree() << endl;
	cout << "树的高度:" << t.Height() << endl;
	cout << endl;
	t.Insert(make_pair(10, 10));
	t.Insert(make_pair(11, 11));
	
	t.levelOrder();
	cout << endl;
	//t.InOrder();
	//t.PrevOrder();
	//t.PostOrder();
	cout << "是否为平衡树?(1:是  0:不是):" << t.IsBalanceTree() << endl;
	cout << "树的高度:" << t.Height() << endl;
	cout << endl;
}
int main()
{
	//TestAVLTree1();
	//TestAVLTree2();
	TestAVLTree3();
	//TestAVLTree4();
	//TestAVLTree5();

	return 0;
}

2.3总结:

通过上述过程,实现了对Insert过程中对二叉树调整、判断等。而AVL树还有Find、Erase等操作,由于难度较大,具体实现可参考教材或其他资料。

这里的AVL借助了平衡因子使得二叉树结构的判断以及调整更加方便,遇到难以理解的过程要画图分析或编译器调试。

后记:
●由于作者水平有限,文章难免存在谬误之处,敬请读者斧正,俚语成篇,恳望指教!

                                                                       ——By 作者:新晓·故知

  • 9
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
以下是生成AVL树的C代码示例: ``` #include <stdio.h> #include <stdlib.h> // AVL树节点 typedef struct avl_node_t { int data; struct avl_node_t *left; struct avl_node_t *right; int height; } avl_node_t; // 获取节点高度 int height(avl_node_t *node) { if (node == NULL) { return 0; } else { return node->height; } } // 获取最大值 int max(int a, int b) { if (a > b) { return a; } else { return b; } } // 创建新节点 avl_node_t* create_node(int data) { avl_node_t *node = (avl_node_t*) malloc(sizeof(avl_node_t)); node->data = data; node->left = NULL; node->right = NULL; node->height = 1; return node; } // 右旋 avl_node_t* rotate_right(avl_node_t *y) { avl_node_t *x = y->left; avl_node_t *B = x->right; // 右旋转 x->right = y; y->left = B; // 更新高度 y->height = max(height(y->left), height(y->right)) + 1; x->height = max(height(x->left), height(x->right)) + 1; // 返回新的根节点 return x; } // 左旋 avl_node_t* rotate_left(avl_node_t *x) { avl_node_t *y = x->right; avl_node_t *B = y->left; // 左旋转 y->left = x; x->right = B; // 更新高度 x->height = max(height(x->left), height(x->right)) + 1; y->height = max(height(y->left), height(y->right)) + 1; // 返回新的根节点 return y; } // 获取平衡因子 int get_balance(avl_node_t *node) { if (node == NULL) { return 0; } else { return height(node->left) - height(node->right); } } // 添加节点 avl_node_t* insert_node(avl_node_t *node, int data) { // 如果节点为空,直接创建节点 if (node == NULL) { return create_node(data); } if (data < node->data) { // 插入到左子树中 node->left = insert_node(node->left, data); } else if (data > node->data) { // 插入到右子树中 node->right = insert_node(node->right, data); } else { // 如果节点已经存在,则返回原节点 return node; } // 更新节点高度 node->height = max(height(node->left), height(node->right)) + 1; // 获取当前节点的平衡因子 int balance = get_balance(node); // 如果平衡因子大于1,需要做旋转操作 if (balance > 1) { if (data < node->left->data) { // 左子树的左边 return rotate_right(node); } else if (data > node->left->data) { // 左子树的右边 node->left = rotate_left(node->left); return rotate_right(node); } } else if (balance < -1) { if (data > node->right->data) { // 右子树的右边 return rotate_left(node); } else if (data < node->right->data) { // 右子树的左边 node->right = rotate_right(node->right); return rotate_left(node); } } // 已经平衡,返回当前节点 return node; } // 中序遍历AVL树 void inorder_traversal(avl_node_t *node) { if (node == NULL) { return; } inorder_traversal(node->left); printf("%d ", node->data); inorder_traversal(node->right); } int main() { avl_node_t *root = NULL; int data; printf("输入AVL树节点数据,以-1结束:\n"); scanf("%d", &data); while (data != -1) { root = insert_node(root, data); scanf("%d", &data); } printf("中序遍历AVL树:\n"); inorder_traversal(root); return 0; } ``` 以上代码演示了如何创建新节点、获取高度、添加节点、获取平衡因子和做旋转操作等。在这个示例中,程序根据用户输入创建了一个AVL树,然后对树进行中序遍历,输出树节点数据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值