【三维 DP 的简单应用】

LeetCode 2435. 矩阵中和能被 K 整除的路径

算法:动态规划

f ( i , j , t ) f(i, j, t) f(i,j,t) 表示当前在的格子坐标为 ( i , j ) (i, j) (i,j),且所有到达此点的路径和(包括此点)对 k k k 取余数为 t t t 的方案数。

由于只能往下和往右走,因此可以得到状态转移方程:

f ( i , j , ( g [ i ] [ j ] + t ) % k ) = f ( i − 1 , j , t ) + f ( i , j − 1 , t ) f(i, j, (g[i][j] + t) \% k) = f(i - 1, j, t) + f(i, j - 1, t) f(i,j,(g[i][j]+t)%k)=f(i1,j,t)+f(i,j1,t)

所以只需要三重循环,前两重枚举坐标,最内层枚举余数,从 0 ~ k - 1 即可

时间复杂度 O ( n m k ) O(nmk) O(nmk)
C++ 代码
typedef long long LL;

const int MOD = 1e9 + 7;

class Solution {
public:
    int numberOfPaths(vector<vector<int>>& g, int k) {
        int n = g.size(), m = g[0].size();

        vector<vector<vector<int>>> f(n, vector<vector<int>>(m, vector<int>(k)));
        f[0][0][g[0][0] % k] = 1;

        for (int i = 0; i < n; i ++ )
            for (int j = 0; j < m; j ++ ) {
                if (i) {
                    for (int t = 0; t < k; t ++ ) {
                        auto &x = f[i][j][(g[i][j] + t) % k];
                        x = ((LL)x + f[i - 1][j][t]) % MOD;
                    }
                }
                if (j) {
                    for (int t = 0; t < k; t ++ ) {
                        auto &x = f[i][j][(g[i][j] + t) % k];
                        x = ((LL)x + f[i][j - 1][t]) % MOD;
                    }
                }
            }

        return f[n - 1][m - 1][0];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值