37.利用linprog解 有约束条件多元变量函数最小值(matlab程序)

1.简述

      

linprog函数主要用来求线型规划中的最小值问题(最大值的镜像问题,求最大值只需要加个“-”)

2. 算法结构及使用方法
针对约束条件为Ax=b或Ax≤b的问题

2.1 linprog函数
x=linprog(f,A,b)
x=linprog(f,A,b,Aeq,beq)
x=linprog(f,A,b,Aeq,beq,lb,ub)
x=linprog(f,A,b,Aeq,beq,lb,ub,x0)

2.2 参数简介
f:目标函数
A:不等式约束条件矩阵
b:对应不等式右侧的矩阵
Aeq:等式约束条件矩阵
beq:不等式右侧的矩阵
Aeq:等式约束条件矩阵
beq:对应等式右侧的矩阵
lb:x的下界
ub:x的上界
x0:设置初始点x0,这个选择项只是对medium-scale算法有效。默认的large-scale算法和简单的算法忽略任何初始点。(一般用不到)

2.3 常用linprog函数及用法举例
linprog函数常用形式为:

x=linprog(f,A,b,Aep,beq,lb,ub);

例子:  学习目标:有约束条件多元变量函数最小值
 适合  计划生产盈利最大   的模式求解,

 最大值解法可转化为求解最小值算法,非常容易


   求最大值转化为求最小值  f=70*x1+120*x2  的最大值,当然x1,x2是有约束的。
   

转化为求  f=-(70*x1+120*x2)  的最小值。


   约束条件:9*x1+4*x2<=3600;4*x1+5*x2<=2000;3*x1+10*x2<=3000;-x1,-x2<

2.代码

主函数:

clc
clear
       
       f=[-70 -120];
       A=[9 4;4 5;3 10];
       B=[3600;2000;3000];
       Aeq=[];  Beq=[];
       lb=[0 0];ub=[inf inf];
        x0=[1 1];
       options=optimset('display','iter','Tolx',1e-8);

     [x,f,exitflag]=linprog(f,A,B,Aeq,Beq,lb,ub,x0,options)
     %[xmincon,fval,exitflag,output] = fmincon(@(x)-(70*x(1)+120*x(2)),x0,A,B,Aeq,Beq,lb,ub,[],options)
 

子函数:

function [x,fval,exitflag,output,lambda]=linprog(f,A,B,Aeq,Beq,lb,ub,x0,options)
%LINPROG Linear programming.
%   X = LINPROG(f,A,b) attempts to solve the linear programming problem:
%
%            min f'*x    subject to:   A*x <= b
%             x
%
%   X = LINPROG(f,A,b,Aeq,beq) solves the problem above while additionally
%   satisfying the equality constraints Aeq*x = beq. (Set A=[] and B=[] if
%   no inequalities exist.)
%
%   X = LINPROG(f,A,b,Aeq,beq,LB,UB) defines a set of lower and upper
%   bounds on the design variables, X, so that the solution is in
%   the range LB <= X <= UB. Use empty matrices for LB and UB
%   if no bounds exist. Set LB(i) = -Inf if X(i) is unbounded below;
%   set UB(i) = Inf if X(i) is unbounded above.
%
%   X = LINPROG(f,A,b,Aeq,beq,LB,UB,X0) sets the starting point to X0. This
%   option is only available with the active-set algorithm. The default
%   interior point algorithm will ignore any non-empty starting point.
%
%   X = LINPROG(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a
%   structure with the vector 'f' in PROBLEM.f, the linear inequality
%   constraints in PROBLEM.Aineq and PROBLEM.bineq, the linear equality
%   constraints in PROBLEM.Aeq and PROBLEM.beq, the lower bounds in
%   PROBLEM.lb, the upper bounds in  PROBLEM.ub, the start point
%   in PROBLEM.x0, the options structure in PROBLEM.options, and solver
%   name 'linprog' in PROBLEM.solver. Use this syntax to solve at the
%   command line a problem exported from OPTIMTOOL.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

素馨堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值