一、绪论
1.1 数字电子技术
数字电子技术是一门研究数字信号的编码、运算、记忆、计数、存储、测量和传输的科学技术。
1.2 数字电路的发展
电子管→半导体管→集成电路
1.3 数字电路的发展趋势
大规模:提高系统可靠性、减小体积、降低成本和功耗
低功耗:超大规模芯片功耗可低达mW级。
高速度:运算速度最快的计算机达到了每秒亿亿次的级别。
可编程:PLD。
可测试:进行故障诊断。
1.4 数字电路的特点
模拟电路: 处理的信号是时间上连续的信号
数字电路: 处理的信号是离散的信号
1. 在数码技术中一般都采用二进制:0和1;
2. 数字电路易于集成化;
3. 抗干扰能力强,精度高,逻辑关系确定,电路调试方便;
4. 易保存,保密性好。
5. 通用性好,可采用标准化的逻辑部件来构成各种各样的 数字系统,而且是很多电子系统的改进和升级的方向
6. 研究对象是输入和输出的逻辑关系,因此主要的分析工具是逻辑代数,表达电路的功能主要是真值表、逻辑表达式及波形图等。
二、第一章数制和码制
1. 数制
1.1 常用数制
1. 基数:进位制的基数,就是在该进位制中可能用到的数码个数。
2. 位权(位的权数):在某一进位制的数中,每一位的大小都对应着该位上的数码乘上一个固定的数,这个固定的数就是这一位的权数。权数是一个幂。
3. 由于目前在微型计算机系统中普遍采 用8位、16位、32位二进制并行运算,而8 位、16位、32位二进制数可以用2位、4位、 8位十六进制数表示,因而用十六进制符号 书写程序十分方便,成为当前的主流程序 书写模式。
十进制
数码为:0~9
基数是10,用字母D表示
运算规律:逢十进一,即:9+1=10。
二进制
数码为:0、1
基数是2,用字母B表示
运算规律:逢二进一,即:1+1=10。
八进制
数码为:0~7;基数是8,用字母O表示
运算规律:逢八进一,即:7+1=10。
八进制数的权展开式:D=∑ki×8i
十六进制
数码为:0~9、A~F;基数是16,用字母H来表示
运算规律:逢十六进一,即:F+1=10
十六进制数的权展开式:D=∑ki×16i
1.2 数制转换
1.21 任意进制数–>十进制数
位权展开法(例二进制)
1.22 十进制数–>任意进制数
1.23 二进制转–>任意进制
1. 将二进制数由小数点开始,整数部分向左,小数部分向右,每4位分成一组,不够4位补零,则每组二进制数便是一位十六进制数
2. 二进制数与八进制数的相互转换,按照每3位二进制数对应于一位八进制数进行转换。
1.3 二进制算术运算
二进制算术运算和十进制算术运算规则基本相同,区别是“逢二进一”。
2. 码制
2.1 原码、反码、补码(简述)
注释:
[+0]原 ≠ [0]原
最高位作为符号位,正数为0,负数为1
符号位不变,其余各位在原码的基础上按位取
最高位作为符号位,正数为0,负数为1。正数的补码和它的原码相同;负数的补码需先将其原码数值逐位求反,然后在最低位加1。
2.2 常见编码
1. 计算机硬件是基于二进制的,因此需要用二进制编码表示十进制的0~9十个码元, 即BCD (Binary Coded Decimal) 码。
2. 至少要用四位二进制数才能表示0~9,因为四位二进制有16种组合。
3. 现在的问题是要在16种组合中挑出10个,分别表示0~9,怎么挑呢?
不同的挑法构成了不同的BCD码。
8421码:用四位自然二进制码中的前十个码字来表示十进制数码,因各位的权值依次为8、4、2、1,故称8421 BCD码。
余3码:由8421码加0011得到;
2421码、5211码:与8421类似,只是权值不同而已。
格雷码是一种循环码,其特点是任何相邻的两个码字,仅有一位代码不同,其它位相同。