人工智能ch2习题

文章探讨了两种解决3X3数字矩阵填数问题的方法,要求每行数字组成的十进制数平方根为整数。第一种方法基于深度优先搜索(DFS),通过剪枝优化来避免无效填充。第二种方法利用bitset预处理和优化搜索过程。同时,对比了宽度优先搜索(BFS)和DFS的优缺点,并举例说明了在八数码问题中BFS的应用。
摘要由CSDN通过智能技术生成

Ch2习题

1、 在 3 X 3 的空格内,用1,2,…, 9 的9个数字填入9个空格内,使得每行数字组成的十进制数平方根为整数。试用一般图搜索搜索算法求解。

解:

思路:

第一种方法:

一共有9!次填法情况。数据庞大,需要考虑如何进行剪枝优化,第一行不满足情况,就可以直接进行回溯直到第一行满足,才进行到第二行的搜索。

#include<bits/stdc++.h>
using namespace std;

bool is_square(int n)
{
    int root=(int)sqrt(n);
    return root*root==n;
}

vector<int> ans;
vector<int>nums(10);
vector<int> visited(10,0);

bool dfs(int count)
{
    if (count==9) 
    {
        return true;
    }
    for(int i=1;i<=9;i++)
    {
        if(!visited[i]) 
        {
            nums[count] =i;
            visited[i]=1;
            if( count%3==2)//改善count==2||count==5||count==8
            {
                int n=nums[count-2]*100+nums[count-1]*10+nums[count];
                if(is_square(n))
                {
                    if(dfs(count+1))
                    {
                        ans.push_back(nums[count-2]);
                        ans.push_back(nums[count-1]);
                        ans.push_back(nums[count]);
                        return true;
                    }
                }
            }
            else
            {
                if(dfs(count+1)) return true;
            }
            visited[i]=0;//这里之前放在大括号外面,导致出错
        }
    }
    return false;
}


int main()
{
    dfs(0);
    // cout<<ans.size();
    for(int i=0;i<=8;i++)
    {
        cout<<ans[i]<<' ';
        if(i%3==2) cout<<endl;
    }
    system("pause");
    return 0;
}

第二种方法:

这里提供另外一个优化搜索的预处理手段,是借鉴了我室友的代码,学习到了bitset的用法。

bitset是C++stl模块的一个容器,用于表示一个固定长度的二进制序列,即位集合。可以方便位运算和查询位

#include<bits/stdc++.h>
using namespace std;

vector<int> v,ch(3);//ch是一行的临时数组
vector<bitset<10>> vb;//位串的集合
vector<vector<int>> sol;//解的数组

void dfs(int ind,int cnt,bitset<10> sel) 
{
	if(cnt==3)sol.push_back(ch);
	else for(;ind<v.size();ind++)if((sel|vb[ind]).count()==cnt*3+3)//可以看图1.1确保两行没有相同的数字
	{
		ch[cnt]=v[ind];
		dfs(ind+1,cnt+1,sel|vb[ind]);
	}
}//bitset.count()可以计算出二进制串中的1的数量

signed main()
{
	int i,j;
	bitset<10> b(0);
	for(i=11;i<32;i++)
	{
		j=i*i;
		if(j/100==(j/10)%10||j/100==j%10||(j/10)%10==j%10)continue;
		v.push_back(j);
		vb.push_back(bitset<10>((1<<j/100)+(1<<(j/10)%10)+(1<<j%10)));
	}//先进行了预处理,先把3位数中平方数都找到。bitset<n>(a)表示将a转化为n位的二进制串。
	
	dfs(0,0,b);
	cout<<6*sol.size()<<"\n\n";
	for(auto s:sol)for(i=0;i<3;i++)for(j=0;j<2;j++)
	{
		cout<<s[0]<<'\n'<<s[1]<<'\n'<<s[2]<<"\n\n";
		swap(s[j],s[j+1]);
	}
    system("pause");
	return 0;
}

图1.1
图1.1

2、分析宽度优先搜索和深度优先搜索的优缺点,举出他们的正例和反例。

宽度优先搜索深度优先搜索
优点BFS方便找到最短路径
可以检测无向图中是否有环
在只需要一组解时效率较高
适用于深度较高的问题
缺点当所求状态深度较大,会占用大量空间,时间复杂度会比较高。
结点和边数量较多,会大量的重复计算
需要求最优解时效率不如宽度优先搜索
asd

 

优先考虑BFS的例子:EOJ上的第一题【八数码问题】

优先考虑DFS的例子:本次作业第一题

3、有一个农夫带一只狐狸、一只小羊和一个菜篮过河。假设农夫每次只能带一样东西过河,考虑安全,无农夫看管时,狐狸和小羊不能在一起,小羊和菜篮不能在一起。试设计求解该问题的状态空间,并画出状态空间图。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NightHacker

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值