博弈论所得

本文介绍了博弈论中的基础概念,如 Nim 模型、公平游戏和有向图游戏。讲解了 SG 函数及其与 mex 运算的关系,探讨了 SG 函数在有向图游戏中的应用,并揭示了 SG 函数的真实意义,表示在 Nim 游戏中对应堆石子的数量。最后提到了 Nim 游戏的结论和有向图游戏的总游戏与小游戏的关系,但证明部分未展开,留待后续更新。
摘要由CSDN通过智能技术生成

基础

nim模型:a1^a2^a3^...^an==0则sg(G)==0整个游戏后手必胜

公平游戏:1.二位玩家轮流操作;2.每种状态的操作与身份无关;3.不能行动的玩家输

有向图游戏:一个有向无环图有唯一一个棋子作为起点,棋子每次只能沿有向边走一步,无法移动游戏结束,所有公平游戏都会对应一个有向图游戏;

mex运算:mex的作用对象是一个集合S,返回值为不属于S的最小非负整数;

SG函数:对一个状态s,在有向图中有k条有向边(转化结果)

SG(s)=mex{SG(s0),SG(s1),SG(s2)...SG(s  k-1)}如果SG(s)==0则后手必胜,否则先手必胜

有向图的总游戏和小游戏:一个有向图游戏G如果可以分成几个有向图游戏G1,G2,G3...GK

则SG(G)=SG(G1)^SG(G2)^...^SG(GK)

证明放在进阶

进阶

SG函数的真实意义SG(Gi)对应nim游戏的第i堆石子有SG(Gi)个

SG(0)=0;0是游戏的终点,由于边是有向的,终点不会连到任何点,

所以SG(0)=mex{空集}=0;然后对于所有连到终点的点ai,终点的sg为0,sg(ai)>0;

以此类推,一个数x的sg(x)=k表示对于任意0<=kk<k,x都有一个后继状态y满足sg(y)==kk;

当某个sg(x)==0,那么他能转化到所有y都满足sg(y)>0,必输;

一堆石头有num个,一个状态x的sg(x)=k;对于0<=kk<k的所有kk,x都能转化到;剩余石子为0游戏结束,sg(x)==0游戏结束;完美契合

nim游戏结论的证明:累了,明天更

有向图总游戏和小游戏的结论证明:每一个小游戏就是nim的一堆石子,SG(Gi)为这个游戏的石子数,再通过nim的游戏结论推得

常见解题方法

待更

练习记录和题解

updating

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值