- 博客(4107)
- 收藏
- 关注
原创 基于 BP 神经网络特征提取的指纹识别应用(Matlab代码实现)
每个人(包括指纹在内)皮肤纹路在图案、断点和交叉点上各不相同, 也就是说, 是唯一的, 并且终生不变。依靠这种唯一性和稳定性, 我们就可以把一个人同他的指纹对应起来, 通过比较他的指纹和预先保存的指纹进行比较, 就可以验证他的真实身份。这就是指纹识别技术。十年后指纹识别技术即将迎来一个跳跃性发展的黄金时期, 专家们保守估计, 未来 5 年, 我国将有近百亿元的市场等待着企业去开拓。指纹识别技术的巨大市场前景, 将对国际、国内安防产业产生巨大的影响。识别指纹, 实际上是提取指纹的“细节”特征。
2025-04-04 18:33:04
662
原创 基于PID优化和矢量控制装置的四旋翼无人机(Matlab&Simulink实现)
💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。📋📋📋🎁🎁🎁。
2025-04-04 18:31:05
567
原创 【爆破载荷参数】基于 UFC 3-340-02 / TM 5-855-02 的爆炸压力效应研究(Matlab代码实现)
本文涵盖了以下内容:- 爆炸载荷参数:包括爆炸药剂的特性、产生的爆炸压力、冲击波、破片及热辐射等信息。- 建筑物和结构物的响应:介绍了建筑物和结构物受到爆炸作用时的响应及破坏机制,如振动、应力、位移等。- 安全设计准则:提供了设计工程和基础设施时需要遵循的安全准则,以减轻爆炸压力效应对结构物、人员和设备的影响。- 防爆保护措施:包括爆炸抗冲击设计、隔离区域规划、材料选用和防爆装置的使用等,以提高建筑物和设备的抗爆性能。
2025-04-04 18:28:44
445
原创 【状态估计】健康状态 SOH采用平均加权最小二乘法(AWTLS)进行估计,并对比了加权最小二乘 (WLS)、总最小二乘法(TLS)以及加权总最小二乘法(WTLS)算法(Matlab代码实现)
加权最小二乘法是传统最小二乘法的一种扩展,它在每个数据点上引入了权重,以反映数据点的重要性和可靠性。在SOH的估计中,可以根据电池电压、电流、温度等参数的测量精度或重要性来分配权重。WLS的目标是最小化加权残差平方和。
2025-04-04 18:26:51
359
原创 风电光伏混合储能功率小波包分解、平抑前后波动性分析、容量配置、频谱分析、并网功率波动分析(Matlab代码实现)
风电光伏混合储能系统通过小波包分解、频谱分析和多目标优化,显著提升波动平抑效果与经济性。未来需进一步探索人工智能算法在实时控制中的应用,并推动重力储能、氢储能等新技术集成,以应对更高比例可再生能源并网挑战。📚2 运行结果部分代码:%2.执行小波包分解,%进行3层小波包分解%节点编号重组% nodes=[7;8;9;10;11;12;13;14];nodes=[63;64;65;66;67;68;69;70;71;72;73;74;75;76;77;78;79;80;81;82;
2025-04-04 18:24:28
542
原创 多旋翼无人机组合导航系统-多源信息融合算法(Matlab代码实现)
多旋翼无人机组合导航系统一般由多个部分构成,其中传感器是基础组成单元。常用传感器包括全球定位系统(GPS)、陀螺仪、加速度计、磁力计等。GPS 能提供无人机在全球坐标系下的位置信息;陀螺仪用于测量无人机的角速度,以确定其姿态变化;加速度计测量无人机的加速度;磁力计则可辅助确定无人机的航向。多源信息融合算法旨在将来自不同传感器的信息进行有机整合,以获取更准确、可靠的结果。
2025-04-04 18:22:23
513
原创 计及新能源出力不确定性的电气设备综合能源系统协同优化(Matlab代码实现)
运行视频及运行结果:计及碳排放成本的电-气-热综合能源系纷充节点能价计算方法研究(Matlab代码实现)
2025-04-04 18:20:20
218
原创 【论文复现】【江南大学大学数据】基于S变换和卷积神经网络的滚动轴承故障诊断研究(Matlab代码实现)
文章:S变换(Stockwell Transform)是Stockwell于1996年提出的时频分析方法,结合了短时傅立叶变换(STFT)和连续小波变换(CWT)的优势,适用于非平稳信号的时频局部化分析。其数学定义为:核心特性:在滚动轴承故障诊断中,S变换可将振动信号转换为时频图(Time-Frequency Image),直观展示故障冲击的时频分布特征,例如主频段、边带频率等。例如,文献中通过对微震信号进行S变换,成功提取了振幅和频率参数,用于识别滚动轴承的剥落故障。CNN是一种深度学习模型,通过卷积层、
2025-04-04 18:18:19
396
原创 基于PI+重复控制的有源滤波器谐波抑制策略模型(Simulink仿真实现)
新版本的有源电力滤波器谐波抑制策略模型基于PI+重复控制。该模型采用Simulink进行仿真实现,利用无功补偿和PI+重复控制技术有效抑制了谐波,最终使总谐波畸变率(THD)降低至小于1%。此仿真模型提供了2015和2017两个版本,以方便在不同版本的Matlab上运行。重复控制理论是建立在以内模原理为基础之上的,其本质上是一个反馈控制系统,因为重复控制器中有外部信号的数学模型,因此系统具有很小的稳态误差。
2025-04-04 18:15:58
269
原创 【储能选址定容】基于多目标粒子群算法的配电网储能选址定容(Matlab代码实现)
文献:储能选址定容是指确定储能系统在配电网中的最优安装位置(选址)和容量配置(定容),以实现电网稳定性、经济性和可靠性的多目标优化。其核心目标包括降低网损、平抑电压波动、提高新能源消纳能力、优化投资成本等。随着可再生能源渗透率提高,储能技术因其能量时空平移能力成为解决配电网波动性问题的关键。关键约束条件:研究现状:基本原理:MOPSO将单目标PSO扩展至多目标优化领域,通过粒子群协同搜索生成Pareto最优解集。其核心机制包括:粒子更新:根据个体历史最优(pbest)和全局最优(gbest)调整速度和位置
2025-04-04 18:14:02
429
原创 【凯斯西储大学】基于S变换-CNN,ResNet,CNN-SVM,CNN-LSTM的轴承诊断方法研究(Matlab代码实现)
方法优势局限性典型准确率适用场景S变换-CNN时频特征全面,适合非平稳信号计算量大,泛化能力有限高精度单一工况诊断ResNet深度特征提取,跨工况迁移性强需结合模态分解预处理复杂噪声环境与小样本任务CNN-SVM分类边界清晰,适合高维特征训练时间长,资源消耗高98.54%(混合模型)多类别精细分类CNN-LSTM时序建模能力强,抗噪声鲁棒性高需大量时序数据训练>99%(工业数据集)寿命预测与复合故障诊断未来研究方向轻量化设计。
2025-04-04 18:12:04
377
原创 【创新没发表】【COA-ELM分类】基于小龙虾算法COA优化极限学习机ELM实现乳腺癌诊断研究(Matlab代码实现)
💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。📋📋📋🎁🎁🎁。
2025-04-04 18:09:40
364
原创 考虑源荷不确定性的热电联供微网优化(Matlab代码实现)
源荷不确定性指可再生能源出力(如风电、光伏)与负荷需求(电、热、冷)的不可预测波动,对微网运行的经济性和可靠性产生显著影响。不确定性来源与特点源侧不确定性:风电出力受气象条件影响大,预测误差可达30%以上,适合采用鲁棒优化处理。荷侧不确定性:负荷波动具有较强时间规律性(如日内峰谷变化),适合基于历史数据的随机场景生成。建模方法对比方法原理适用场景局限性概率分布模型基于历史数据拟合正态分布、Weibull分布等,描述随机变量的概率特性数据充足、波动规律明显的情况。
2025-04-04 18:07:15
519
原创 【论文复现】【凯斯西储大学数据】基于S变换和卷积神经网络的滚动轴承故障诊断研究(Matlab代码实现)
文章:S变换(Stockwell Transform)是Stockwell于1996年提出的时频分析方法,结合了短时傅立叶变换(STFT)和连续小波变换(CWT)的优势,适用于非平稳信号的时频局部化分析。其数学定义为:核心特性:在滚动轴承故障诊断中,S变换可将振动信号转换为时频图(Time-Frequency Image),直观展示故障冲击的时频分布特征,例如主频段、边带频率等。例如,文献中通过对微震信号进行S变换,成功提取了振幅和频率参数,用于识别滚动轴承的剥落故障。CNN是一种深度学习模型,通过卷积层、
2025-04-04 18:00:16
321
原创 【江南大学大学】基于S变换-CNN,ResNet,CNN-SVM,CNN-LSTM的轴承诊断方法研究(Matlab代码实现)
方法优势局限性典型准确率适用场景S变换-CNN时频特征全面,适合非平稳信号计算量大,泛化能力有限高精度单一工况诊断ResNet深度特征提取,跨工况迁移性强需结合模态分解预处理复杂噪声环境与小样本任务CNN-SVM分类边界清晰,适合高维特征训练时间长,资源消耗高98.54%(混合模型)多类别精细分类CNN-LSTM时序建模能力强,抗噪声鲁棒性高需大量时序数据训练>99%(工业数据集)寿命预测与复合故障诊断未来研究方向轻量化设计。
2025-04-04 17:57:50
520
原创 MATLAB|【模拟信号采样和重构】通过不同采样间隔的信号采样来分析时间和频率图、分析量化电平对模数转换的影响研究
下面是一个基于Simulink的模拟信号采样和重构模型,用于分析不同采样间隔对信号的时间和频率特性的影响,以及量化电平对模数转换的影响。1. 信号生成模块:使用Sine Wave Generator模块生成一个模拟信号作为采样信号源。2. 采样模块:使用Zero-Order Hold模块进行采样操作,并设置不同的采样间隔(采样频率)。3. 重构模块:使用Reconstruct 1-D模块对采样信号进行重构操作。
2025-04-03 23:01:48
502
原创 基于非支配排序遗传算法NSGAII的综合能源优化调度(Matlab代码实现)
💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。📋📋📋🎁🎁🎁。
2025-04-03 22:59:23
385
原创 【风电功率预测】【多变量输入单步预测】基于TCN-GRU-Attention的风电功率预测研究(Matlab代码实现)
1. 时间卷积网络(TCN)功能:TCN通过一维卷积层处理序列数据,能够有效地捕捉到时间序列中的局部特征,同时减少了计算复杂度,并有助于防止梯度消失问题。优势:相比传统的RNN和LSTM,TCN具有更好的并行计算能力,能够更快地处理长序列数据。2. 门控循环单元(GRU)功能:GRU是RNN的一种变体,通过引入更新门和重置门,能够处理长期依赖关系,并保留对重要信息的记忆。优势:相比LSTM,GRU具有更少的参数和更快的训练速度,同时保持了良好的性能。3. 注意力机制(Attention)功能。
2025-04-03 22:56:30
654
原创 面向100%清洁能源的发输电系统扩展规划研究(Matlab代码实现)
定义与分类100%可再生能源电力系统(100% REPS)是指完全依赖水能、风能、太阳能、生物质能等非化石燃料的可再生能源发电系统,并通过电网输配至终端用户。碳中和电力系统:通过核电、CCS技术改造的化石能源机组实现净零碳排放。纯清洁能源电力系统:各国定义存在差异,例如中国将天然气纳入清洁能源范畴,而美国则仅包含可再生能源和核能。技术构成发电侧:以风、光为主(占主体能源地位),辅以水电、生物质能、地热能等调节性能源。输电侧:需结合特高压直流、柔性直流等技术,解决可再生能源跨区域输送问题。
2025-04-03 22:52:03
637
原创 微电网两阶段鲁棒优化经济调度方法(Python代码实现)
由于随机规划方法寻求的是目标函数期望值最大/最小的解集,存在某种场景下决策不合理的风险,因此,文献[9]将随机规划和条件风险价值约束方法相结合,使得相应场景下的预期收 图1所示为典型的微电网结构,由可控分布式电源、可再生分布式电源、储能及本地负荷集成而成。本文构建了基于两阶段鲁棒优化的微电网经济调度模型,考虑微电网内可再生分布式电源和负荷的不确定性及储能、需求响应负荷和可控分布式电源等的协调控制,通过一系列的模型推导和转换,将两阶段问题转变为具有混合整数线性形式的主问题和子问题进行求解。
2025-04-03 22:50:00
332
原创 考虑不确定性的含集群电动汽车并网型微电网随机优化调度研究(Matlab代码实现)
综上所述,考虑不确定性的含集群电动汽车并网型微电网随机优化调度研究是一个复杂而重要的课题。通过建立数学模型、确定随机变量、采用随机优化算法以及评估和优化等步骤,可以实现对含集群电动汽车并网型微电网的随机优化调度。未来,该研究领域将具有更广阔的应用前景和重要的研究价值。📚2 运行结果🎉3参考文献文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。[1]陈浩宇.考虑电动汽车的并网型微电网优化协调调度[D].山西大学[2023-11-06].
2025-04-03 22:47:46
383
原创 【EI复现】考虑区域多能源系统集群协同优化的联合需求侧响应模型(Matlab代码实现)
文献[7-9]主要研究结合热网模型的多区域能源系统的协同规划及优化运行问题,即通过区域热网将多个能源系统相互联接,考虑系统能量平衡约束及热网约束,以运行成本最小为目标,研究含热网模型多区域能源系统的优化运行问题。仿真结果表明,提出的联合需求侧响应模及其优化运行策略,能够有效提高多个区域能源系统间的能量协调能力,增强多能源互联系统总体需求侧响应能力,并降低需求侧响应成本。内考虑负荷调节、需求响应问题,而且通过各个多能源系统间协调调度使得多个区域级多能源系统形成的互联系统作为总体对外呈现需求侧响应特性。
2025-04-03 22:45:09
453
原创 【GSABO-BP分类】基于融合黄金正弦的减法优化器算法GSABO优化BP神经网络分类研究(Matlab代码实现)
💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。📋📋📋🎁🎁🎁。
2025-04-03 22:43:05
654
原创 考虑源荷两侧不确定性的含风电电力系统低碳调度(Matlab代码实现)
源侧不确定性风电与光伏出力波动:风电出力受风速影响,遵循Weibull分布;光伏出力与光照强度相关,服从Beta分布。这些波动导致可再生能源渗透率提升时,系统调峰压力显著增加,尤其是风电的反调峰特性(日间出力高、夜间低)与负荷峰谷叠加后形成“净负荷”曲线,进一步加剧调峰难度。建模方法:通常采用概率分布模型(如正态分布、Weibull分布)或场景生成技术(Monte Carlo模拟、拉丁超立方抽样)描述不确定性。
2025-04-03 22:39:25
440
原创 【GSABO-BP预测】基于融合黄金正弦的减法优化器算法GSABO优化BP神经网络预测研究(Matlab代码实现)
💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。📋📋📋🎁🎁🎁。
2025-04-03 22:37:15
420
原创 基于多时段动态电价的电动汽车有序充电策略优化(Matlab代码实现)
多时段动态电价(Dynamic Pricing)是一种根据电力供需关系实时调整电价的机制,通常将一天划分为多个时段(如峰、平、谷),通过价格信号引导用户调整用电行为。其核心目标是平衡电网负荷、降低运营成本,并促进可再生能源消纳。例如,中国《关于进一步完善分时电价机制的通知》要求拉大峰谷电价差,并引入动态调整机制,以适配季节性用电差异。欧洲国家如德国通过动态电价结合智能电表,使家庭电费节省达34%。智能电表:实时记录用电数据并传输至电网运营商;机器可读电价标准。
2025-04-03 22:35:02
492
原创 【论文复现】基于PSO-VMD-MCKD方法的风机轴承微弱故障诊断研究(Matlab代码实现)
💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。📋📋📋🎁🎁🎁。
2025-04-03 22:32:33
527
原创 【不确定性研究】基于信息间隙决策理论的综合能源系统优化调度研究【改进粒子群优化算法求解】(Matlab代码实现)
电-气综合能源系统的运行面临多种不确定性因素,包括可再生能源波动、负荷需求变化、系统设备故障等都会对IEGS 的安全稳定运行产生影响。近年来,国内外也有一部分研究针对电-气综合能源系统优化调度中的不确定性,主流的是采用随机优化和鲁棒优化的方式进行决策。文献[35-37]单独考虑可再生能源出力不确定性展开论述。文献[35]利用动态场景方法刻画新能源出力不确定性,计及温控负荷调节能力等约束,研究新能源消纳对配电网的影响。
2025-04-03 22:29:58
399
原创 【论文复现】基于PSO-VMD-MCKD方法的风机轴承微弱故障诊断研究(Matlab代码实现)
💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。📋📋📋🎁🎁🎁。
2025-04-03 22:04:43
858
原创 微电网两阶段鲁棒优化经济调度方法(Python代码实现)
由于随机规划方法寻求的是目标函数期望值最大/最小的解集,存在某种场景下决策不合理的风险,因此,文献[9]将随机规划和条件风险价值约束方法相结合,使得相应场景下的预期收 图1所示为典型的微电网结构,由可控分布式电源、可再生分布式电源、储能及本地负荷集成而成。本文构建了基于两阶段鲁棒优化的微电网经济调度模型,考虑微电网内可再生分布式电源和负荷的不确定性及储能、需求响应负荷和可控分布式电源等的协调控制,通过一系列的模型推导和转换,将两阶段问题转变为具有混合整数线性形式的主问题和子问题进行求解。
2025-04-03 09:10:03
421
原创 QPSK调制研究(Simulink仿真实现)
QPSK(Quadrature Phase Shift Keying)即正交相移键控,是一种数字调制方式。它的每个码元含有2bit的信息,分为绝对相移和相对相移两种。在数字信号的调制方式中,QPSK四相移键控是最常用的一种卫星数字信号调制方式,具有较高的频谱利用率、较强的抗干扰性,且在电路上实现也较为简单。目前,QPSK调制技术广泛应用于数字通信、数字视频广播、数字卫星广播、移动通信等无线通信领域,成为现代通信中一种十分重要的调制解调方式。
2025-04-02 10:13:22
483
原创 基于LEACH和HEED的WSN路由协议研究与改进(Matlab代码实现)
无线传感器网络是不断发展的传感技术之一,也用于执行不同的任务。这些类型的网络在许多领域都是有益的,例如紧急情况,健康监测,环境控制,军事,工业,并且由于无线电范围,这些网络容易受到恶意用户和物理攻击。
2025-04-02 09:55:09
340
原创 【DQN Pytorch】基于DQN和PyTorch的无人机子带分配集中研究(Python代码实现)
无人机子带分配是指通过算法将有限的通信或任务资源(如频谱、功率、时隙等)动态分配给多架无人机,以优化系统整体性能。其核心目标包括最大化覆盖效率最小化能耗与延迟,以及适应动态环境变化。典型应用场景军事侦察与协同作战:在异构无人机群中,通过子带分配实现目标区域的高效覆盖与协同攻击。城市物流配送:通过动态分配无人机配送路径与通信资源,优化中心选址与任务调度。农业资源投放:将农药、种子等生产材料快速分配至分散农田区域.
2025-04-02 09:53:46
715
原创 基于遗传算法的最优潮流问题的研究(Matlab实现)【期刊论文复现】
最优潮流(Optimal Power Flow, OPF)是电力系统稳态分析的核心问题,旨在寻找满足安全约束条件下使系统性能指标(如发电成本、网损、电压质量等)最优的潮流分布[1][25]。其数学模型可表述为非线性规划问题:其中,u为控制变量(如发电机出力、变压器分接头),x为状态变量(如节点电压幅值与相角),等式约束为潮流方程,不等式约束涵盖设备运行限值。
2025-04-02 09:51:29
271
原创 【状态估计】【雷达】基于扩展卡尔曼滤波的雷达目标跟踪融合研究(Matlab代码实现)
EKF在雷达目标跟踪中通过局部线性化有效解决了非线性观测问题,其与多传感器融合技术的结合显著提升了跟踪精度和鲁棒性。然而,面对高机动目标和大规模传感器网络,仍需进一步探索高阶非线性滤波算法与分布式计算框架。未来的研究可聚焦于自适应参数调整、多模型融合优化以及硬件加速实现,以满足复杂战场和民用场景的实时需求。📚2 运行结果部分代码:for m=1:M%过程噪声%观测噪声%构造 真实轨迹X 与 观测轨迹Zfor n=2:Nif n == 30endend。
2025-04-02 09:50:22
261
原创 专家PID控制轨迹跟踪研究(Matlab代码实现)
PID 控制器由于 结 构 简 单、稳 定 性 好、可 靠 性 高 等 优点,在工业过程控制中运用非常广泛。传统PID控制器是将偏差(e)的比例(P)、积分(I)、微分(D)通过线性组合构成控制量(U)来控制被控对象:传统PID控制方法是通过合理调整误差信号的比例、微分和积分增益的大小来对系统实施有效控制的。设计中增大比例增益能够提高系统的响应速度,减小稳态误差,但比例增益过大又会导致超调和振荡﹐使系统稳定性变差;加入微分量,可以抑制超调﹐但又会使响应速度变慢;
2025-04-02 09:49:31
364
原创 【负荷预测】基于VMD-CNN-LSTM的负荷预测研究(Python代码实现)
VMD-CNN-LSTM模型是一种结合了变分模态分解(VMD)、卷积神经网络(CNN)和长短时记忆网络(LSTM)的混合预测模型。数据预处理:收集历史电力负荷数据,并进行必要的清洗和规范化处理,以消除异常值和噪声。VMD分解:利用VMD技术对预处理后的负荷数据进行分解,将其分解为多个固有模式函数(IMF)。每个IMF分量代表原始信号中不同频率的成分,有助于分离噪声和信号,并揭示隐藏在复杂负荷数据中的模式。CNN特征提取:对每个IMF分量,使用CNN进行特征提取。
2025-04-02 09:48:50
324
原创 具有多种最大功率点跟踪(MPPT)方法的光伏发电系统(P&O-增量法-人工神经网络-模糊逻辑控制-粒子群优化)之使用粒子群算法的最大功率点追踪(MPPT)(Simulink仿真实现)
本工作中提出多种基于不同技术的光伏系统最大功率点追踪(MPPT)方法:最大功率点追踪(Maximum Power Point Tracking,简称MPPT)是一种应用于光伏系统、风力发电系统等可再生能源领域的控制策略,其主要目的是使能量转换设备(如太阳能电池板或风力发电机)在任何给定条件下都能以最高效率工作,即工作在其输出功率最大的点。MPPT技术能够显著提高系统的整体效率和能源利用率。粒子群优化(Particle Swarm Optimization,简称PSO)算法是一种基于群体智能的优化方法,灵感来
2025-04-02 09:48:01
263
原创 【轴承故障诊断】基于SE-TCN和SE-TCN-SVM西储大学轴承故障诊断研究(Matlab代码实现)
💥💥💞💞❤️❤️💥💥博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️行百里者,半于九十。📋📋📋🎁🎁🎁。
2025-04-02 09:47:04
994
原创 【轴承故障诊断】基于SE-TCN和SE-TCN-SVM江南大学轴承诊断轴承故障诊断研究(Matlab代码实现)
江南大学通过SE-TCN-SVM模型,将通道注意力机制与SVM分类器创新结合,显著提升了轴承故障诊断的准确率和泛化能力。其研究不仅推动了深度学习在机械健康监测中的应用,也为工业智能维护提供了理论和技术支撑。未来,团队计划进一步优化模型效率并拓展至更广泛的故障诊断场景。📚2 运行结果temp = [];%故障类别数headers = {'故障类别1';'故障类别2';'故障类别3';'故障类别4';'故障类别5';'故障类别6';'故障类别7';'故障类别8';'故障类别9';'故障类别10'};
2025-04-02 09:46:15
323
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人