【雷达通信】智能超表面(RIS)辅助双功能雷达和通信波束形成设计(Matlab代码实现)

  👨‍🎓个人主页:研学社的博客 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

1. 智能超表面基础

2. RIS在DFRC中的应用

3. 波束形成设计挑战与方法

4. 研究趋势与展望

📚2 运行结果

🌈3 Matlab代码实现

🎉4 参考文献



💥1 概述

智能超表面,也叫做“可重配智能表面”,或者“智能反射表面”,英文为RIS(Reconfigurable Intelligence Surface),或者IRS(Intelligent Reflection Surface)。

为了缓解未来网络频谱拥塞,下一代无线通信系统希望复用雷达的频段,其对应的模型就是雷达和通信频谱共存(Radar-Communication Coexistence,RCC),这个是雷达和通信从分离走向融合的初步阶段。

本文对双功能雷达和通信系统的波束形成优化,其中部署了可重新配置的智能表面以增强性能。

智能超表面(Reconfigurable Intelligent Surface,简称RIS)作为一种新兴技术,在雷达通信领域展现出了巨大的潜力,特别是在实现双功能雷达-通信系统(DFRC,Dual-Function Radar and Communication)的波束形成设计中。这类系统旨在同时执行雷达探测与无线通信任务,以提高频谱效率和系统整体性能。下面简要概述智能超表面如何辅助DFRC系统的波束形成设计:

1. 智能超表面基础

智能超表面是由大量可编程元组成的二维平面结构,每个元都能独立地控制接收到的电磁波的相位、幅度甚至频率,从而实现对电磁波传播环境的动态调控。这种能力使得RIS能够优化信号传播路径,增强目标区域的信号强度,同时减少干扰和能量损失。

2. RIS在DFRC中的应用

在DFRC系统中,智能超表面可以被部署在雷达天线和/或通信天线附近,或者作为两者的共享界面,通过精心设计的相位配置来实现以下功能:

  • 多任务优化:通过动态调整反射元件的相位,RIS能够在同一时间频谱资源上支持雷达探测与无线通信的波束形成,最大化系统效能。

  • 波束赋形与空间分集:为雷达探测生成定向高增益波束,同时为通信链路提供稳定的信号路径和多径分集增益,提高通信质量和覆盖范围。

  • 互操作性和干扰管理:通过智能调整反射系数,RIS可以有效分离雷达和通信信号的空间域,减少相互之间的干扰,实现高效的频谱共享。

  • 能量效率提升:通过优化信号传播路径,RIS能够减少传输功率需求,特别是在复杂环境中,有助于延长电池驱动平台的续航能力。

3. 波束形成设计挑战与方法

  • 联合优化算法:设计联合优化算法是关键,需要考虑雷达探测性能指标(如检测概率、分辨率)与通信质量指标(如误码率、吞吐量),在两者间找到最优的折衷方案。

  • 环境适应性:由于实际环境的复杂性和动态变化,要求RIS的配置策略具有高度的自适应性和灵活性,实时调整以适应环境变化。

  • 硬件限制与计算复杂性:RIS的配置通常受到硬件能力(如相位调节精度、响应速度)的限制,同时优化算法的设计需平衡性能与计算复杂性。

4. 研究趋势与展望

目前,关于RIS辅助的DFRC系统的研究正逐步深入,包括更高级的优化理论、机器学习辅助的智能配置策略、以及实验验证等方向。未来的研究可能会更加侧重于实现技术的实用化,如开发低功耗、低成本的RIS单元,以及集成更高效的联合优化算法框架,进一步推动DFRC系统在实际场景中的应用。

📚2 运行结果

 

部分代码:

clc
clear all
close all
addpath('./simulation_separated/function/');
%% trade-off
%% baseline
figure;
load('./simulation_separated/baseline.mat');
pattern_baseline_sep = pattern_baseline;
wsr_baseline = [0; wsr_baseline;wsr_baseline(end)];
prob_power_baseline = [prob_power_baseline(1); prob_power_baseline;0];
plot(wsr_baseline, prob_power_baseline,'-^b','LineWidth',3,'MarkerSize',3);
hold on;

load('./simulation_shared/baseline.mat');
pattern_baseline_sh = pattern_baseline;
wsr_baseline = [0; wsr_baseline;wsr_baseline(end)];
prob_power_baseline = [prob_power_baseline(1); prob_power_baseline;0];
plot(wsr_baseline, prob_power_baseline,'-+b','LineWidth',3);

%% 20 elements
load('./simulation_separated/ris_aided_data/rician_1000/ris_aided_single.mat');
pattern_ris_20_sep = pattern_ris;
wsr_ris = [0; wsr_ris; wsr_ris(end)];
prob_power_ris = [prob_power_ris(1); prob_power_ris;0];
plot(wsr_ris, prob_power_ris,'-^g','LineWidth',3,'MarkerSize',3);

load('./simulation_shared/ris_aided_data/rician_1000/ris_aided_single.mat');
pattern_ris_20_sh = pattern_ris;
wsr_ris = [0; wsr_ris;wsr_ris(end)];
prob_power_ris = [prob_power_ris(1); prob_power_ris;0];
plot(wsr_ris, prob_power_ris,'-+g','LineWidth',3);

%% 60 elements
load('./simulation_separated/ris_aided_data/rician_1000/ris_aided_single_60.mat');
pattern_ris_60_sep = pattern_ris;
wsr_ris = [0; wsr_ris; wsr_ris(end)];
prob_power_ris = [prob_power_ris(1); prob_power_ris;0];
plot(wsr_ris, prob_power_ris,'-^c','LineWidth',3,'MarkerSize',3);

load('./simulation_shared/ris_aided_data/rician_1000/ris_aided_single_60.mat');
pattern_ris_60_sh = pattern_ris;
wsr_ris = [0; wsr_ris;wsr_ris(end)];
prob_power_ris = [prob_power_ris(1); prob_power_ris;0];
plot(wsr_ris, prob_power_ris,'-+c','LineWidth',3);

%% 100 elements
load('./simulation_separated/ris_aided_data/rician_1000/ris_aided_single_100.mat');
pattern_ris_100_sep = pattern_ris;
wsr_ris = [0; wsr_ris;wsr_ris(end)];
prob_power_ris = [prob_power_ris(1); prob_power_ris;0];
plot(wsr_ris, prob_power_ris,'-^r','LineWidth',3,'MarkerSize',3);

load('./simulation_shared/ris_aided_data/rician_1000/ris_aided_single_100.mat');
pattern_ris_100_sh = pattern_ris;
wsr_ris = [0; wsr_ris; wsr_ris(end)];
prob_power_ris = [prob_power_ris(1); prob_power_ris;0];
plot(wsr_ris, prob_power_ris,'-+r','LineWidth',3);

grid on;
legend('without RIS(separated)','without RIS(shared)','20 elements(separeted)','20 elements(shared)','60 elements(separated)','60 elements(shared)','100 elements(separated)','100 elements(shared)','FontSize',12,'interpreter','latex');
xlabel('WSR [bps/Hz]','FontSize',12,'interpreter','latex');
ylabel('Probing Power [dBm]','FontSize',12,'interpreter','latex');
ylim([19 34]);
xlim([0 10]);

%% radar only beampattern
para = para_init();
theta_degree = -90:90;
theta = theta_degree*pi/180;
pattern_radar_only = zeros(length(theta),1);
a = ULA_func(0,para.M);
R = para.Pt/para.M*(a*a');

🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]赵阳. MIMO雷达-通信联合SINR优化设计算法研究[D].厦门理工学院,2022.DOI:10.27866/d.cnki.gxlxy.2022.000225.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值