背包问题(三基础加六个类背包)

前沿:

从最简单的三种背包:01背包,完全背包,多重背包开始,

第四、第五、第六是背包问题的延伸,每个则又区分了01背包,完全背包,多重背包三种情况,

最后的进阶是更高的延伸出几大背包难点

本文目前只总结了这些问题类型,以及对应的核心代码模板,第四往下的问题直接优化为一维代码了

全文代码说明:

n是物体数量,m是背包最大体积,

a[i]是每个物品的体积

b[i]是每个物品的价值

c[i]是每个物品的数量

dp有一维dp[i]也有二维dp[i][j]

文章目录

一、01背包(0或1)

         二维公式  dp[i][j]=max(dp[i-1][j],dp[i-1][j-a[i]]+b[i])

         一维公式(从m到a[i]反递)  dp[j]=max(dp[j],dp[j-a[i]])

二、完全背包(物体数量无限)

         二维公式  dp[i][j]=max(dp[i-1][j],dp[i][j-a[i]]+b[i])

         一维公式(从a[i]到m正递)  dp[j]=max(dp[j],dp[j-a[i]])

三、多重背包(完全转化为01背包)

            1.二进制优化(不能记录每次放的数量)

            2.转化为01背包(可记录每次放的数量)

四、放满的方案数(方案数应该没有单个背包的价值)

         1.01背包

         2.完全背包        

         3.多重背包(完全按01背包来)

五、混合背包(完全和多重背包)

六、不小于背包容量最小价值(和一,二,三的最大区别在于min)    

        1.01背包

        2.完全背包

         3.多重背包(转化为01背包)    

七、进阶

    1.若求刚好装满时的最大(小)价值            

   2.若求满足条件每个物品的件数,则在上面的基础上加记录路径

    3.背包第k最优解


一、01背包(0或1)

         二维公式  dp[i][j]=max(dp[i-1][j],dp[i-1][j-a[i]]+b[i])

    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
    {
        if(j>=a[i])
            dp[i][j]=max(dp[i-1][j],(b[i]+dp[i-1][j-a[i]]))
        else
            dp[i][j]=dp[i-1][j];
    }
    cout<<dp[n][m]<<endl;

         一维公式(从m到a[i]反递)  dp[j]=max(dp[j],dp[j-a[i]])

    for(int i=1;i<=n;i++)
        for(int j=m;j>=a[i];j--)
            dp[j]=max(dp[j],(b[i]+dp[j-a[i]]));
    cout<<dp[m]<<endl;


二、完全背包(物体数量无限)

         二维公式  dp[i][j]=max(dp[i-1][j],dp[i][j-a[i]]+b[i])

    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
    {
        if(j>=a[i])
            dp[i][j]=max(dp[i-1][j],(b[i]+dp[i][j-a[i]]))
        else
            dp[i][j]=dp[i-1][j];
    }
    cout<<dp[n][m]<<endl;

         一维公式(从a[i]到m正递)  dp[j]=max(dp[j],dp[j-a[i]])

    for(int i=1;i<=n;i++)
        for(int j=a[i];j<=m;j--)
            dp[j]=max(dp[j],(b[i]+dp[j-a[i]]));
    cout<<dp[m]<<endl;

三、多重背包(完全转化为01背包)

            1.二进制优化(不能记录每次放的数量)

    for(int i=1;i<=n;i++)
    {
        int a,b,c,s=1;
        cin>>a>>b>>c;
        while(s<c)
        {
            v[++len]=a*s;     //v是优化后背包体积
            w[len]=b*s;      //w是优化后背包价值
            c-=s;      //先减后乘
            s*=2;
        }
        v[++len]=a*c;
        w[len]=b*c;
    }
    for(int i=1;i<=len;i++)
        for(int j=m;j>=v[i];j--)
            dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
    cout<<dp[m]<<endl;

            2.转化为01背包(可记录每次放的数量)

    memset(dp,0,sizeof(dp));
        scanf("%d%d",&m,&n);
        for(int i=1; i<=n; i++)
            scanf("%d%d%d",&a[i],&b[i],&c[i]);
        for(int i=1; i<=n; i++){
            for(int j=m; j>=a[i]; j--){
                for(int k=0;k<=c[i];k++){
                    if(a[i]*k<=j){
                        dp[j]=max(dp[j],dp[j-a[i]*k]+b[i]*k);
                    }
                    else break;
                }
            }
        }
        cout<<dp[m]<<endl;


四、放满的方案数

        例题链接

         1.01背包

                 二维公式  dp[i][j]=dp[i-1][j]+dp[i-1][j-a[i]]

                 一维公式  dp[j]+=dp[j-a[i]]

   cin>>n>>m;
    for(int i=1;i<=n;i++)
        cin>>a[i];
   dp[0]=1;
    for(int i=1;i<=n;i++)
        for(int j=m;j>=a[i];j--)
            dp[j]+=dp[j-a[i]];
    cout<<dp[m]<<endl;

         2.完全背包        

                 二维公式  dp[i][j]=dp[i-1][j]+dp[i][j-a[i]]

                 一维公式  dp[j]+=dp[j-a[i]]

    cin>>n>>m;
    for(int i=1;i<=n;i++)
       cin>>a[i];
    dp[0]=1;
    for(int i=1;i<=n;i++)
       for(int j=a[i];j<=m;j++)
          dp[j]+=dp[j-a[i]];
    cout<<dp[m]<<endl;

         3.多重背包(完全按01背包来)

        len=0; 
        for(int i=1;i<=n;i++)
        {
            int s=1;
            while(s<c[i])
            {
                v[++len]=que[i]*s;
                c[i]-=s;
                s*=2;
            }
            v[++len]=que[i]*c[i];
        }
        //for(int i=1;i<=len;i++)
        //cout<<v[i]<<endl;
    dp[0]=1;
        for(int i=1;i<=len;i++)
            for(int j=m;j>=v[i];j--)
                dp[j]+=dp[j-v[i]];
        cout<<dp[m]<<endl;

五、混合背包(完全和多重背包)

思路:直接放完整代码,遇到时直接更改

 #include<iostream>
    #include<cstring>
    #include<cstdio>
    using namespace std;
    const int maxn = 1e3;
    int limited[maxn];
    int w[maxn],val[maxn];
    int f[maxn];
    int cnt,v,n;
    void init(){
        memset(limited,0,sizeof limited);
        memset(w,0,sizeof w);
        memset(val,0,sizeof val);
        cnt = 0;
    }
    void solve(){
        for(int i = 1;i <= cnt;i++){
            if(limited[i]){
                for(int j = 1;j <= v;j++) if(j >= w[i])
                    f[j] = max(f[j],f[j-w[i]]+val[i]);
            }else{
                for(int j = v;j > 0;j--) if(j >= w[i])
                    f[j] = max(f[j],f[j-w[i]]+val[i]);
            }
        }
        printf("%d\n",f[v]);
    }
    int main(){
        while(~scanf("%d%d",&v,&n)){
            int a,b,c;
            for(int i = 0;i < n;i++){
                scanf("%d%d%d",&a,&b,&c);
                if(c == 0){
                    w[++cnt] = a,val[cnt] = b;
                    limited[cnt] = 1;
                }else{
                    int t = 1;
                    while(c >= t){
                        val[++cnt] = b*t;
                        w[cnt] = a*t;
                        c -= t;
                        t *= 2;
                    }
                    if(c){
                        val[++cnt] = b*c;
                        w[cnt] = a*c;
                    }
                }
            }
            solve();
        }
        return 0;
    }

六、不小于背包容量最小价值(和一,二,三的最大区别在于min)
    

        例题链接

        1.01背包

    cin>>n>>m;
    for(int i=1;i<=n;i++)
        cin>>a[i]>>b[i];
    memset(dp,inf,sizeof(dp));
    for(int i=1;i<=n;i++)
        for(int j=m;j>=1;j--){
            if(j>a[i])
            dp[j]=min(dp[j],dp[j-a[i]]+b[i]);
            else
            dp[j]=min(dp[j],b[i]);
        }
    cout<<dp[m]<<endl;

        2.完全背包

    cin>>n>>m;
    for(int i=1;i<=n;i++)
        cin>>a[i]>>b[i];
    memset(dp,inf,sizeof(dp));
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++){
            if(j>a[i])
            dp[j]=min(dp[j],dp[j-a[i]]+b[i]);
            else
            dp[j]=min(dp[j],b[i]);
        }
    cout<<dp[m]<<endl;

         3.多重背包(转化为01背包)
    

七、进阶


    1.若求刚好装满时的最大(小)价值
            

       例题: 例题链接

                    a.完全背包 最小价值 刚好装满容量(属于第六类型中的完全背包)

    memset(dp,inf,sizeof(dp));
    dp[0]=0;       //解决j=a[i]时的dp[0]=0
    for(int i=1;i<=n;i++)
        for(int j=a[i];j<=m;j++)
            dp[j]=min(dp[j],dp[j-a[i]]+b[i]);
          //else(j<a[i])
          //dp[j]=min(dp[j],b[i]);   //去掉该情况因为,j小于a[i]时,
                dp[j]必须等于dp[j],传递的是刚好装满的状态,不会用上新的物体
   //此时是用上新的物体完全个,一定要装满,要是用0个,就是dp[j],要是用1,2,3……个,
     先少一个,要想装满去看dp[j-a[i]]的状态,因为该状态是使用该物体完全个
    cout<<dp[m]<<endl;

                    b.完全背包 最大价值 刚好装满容量(属于第二类型中的完全背包) 

    memset(dp,-inf,sizeof(dp));     //区别仅在此,不满的情况直接为inf不在传递该状态
    dp[0]=0;
    for(int i=1;i<=n;i++)
        for(int j=a[i];j<=m;j++)
            dp[j]=max(dp[j],dp[j-a[i]]+b[i]);

    //判断不能达到要求可用  dp[j]<0

   (总结:min用inf,max用-inf,若dp[m]==inf(-inf)则不能达到要求)


   2.若求满足条件每个物品的件数,则在上面的基础上加记录路径


    例题:例题链接

    属于:完全装满方案数(第四),加上记录路径

    3.背包第k最优解


    例题:背包第k最优解

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

int 我

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值