目录
畅通工程续
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
输入
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
输出
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
样本输入
3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2
样本输出
2
-1
题意描述:
多实例,第一行表示城镇数量以及道路数目,接下来是道路信息,表示 城镇1 城镇2以及两个城镇的道路长度,再给一行表示起点和终点,求两点间的最短道路长。
注意: 给的数据中可能每两个城镇之间可能有好几条道路,当我们写程序的时候一定要给条件限制记录输入数据的最短的距离。大家一定要仔细审题!!!😤
解题思路:
利用弗洛伊德(floyed)算法,利用二维数组,先初始化每两条道路距离(因为我们要求最短路,所以初始的时候我们把每两个道路间的距离初始值为远大于给的道路范围10000,比如可以初始为999999),然后根据给的数据再存入数组,因为两个城镇可以有多条道路,所以我们需要在数据输入道路情况的时候,记录最短的那个数存储,因为弗洛伊德算法可以求任意两个城市之间的最短路程距离,所以输出的时候,我们直接输出题目要求的两个城镇就可以了,如果要计算的两城市之间没有路,利用if条件来判断它的二维数组值是否为我们初始的值,是的话输出-1.
AC代码:
#include<stdio.h>
#include<string.h>
int main(void)
{
int e[210][210],n,m,t1,t2,t3,a,b;
int inf=999999;
while(~scanf("%d %d",&n,&m))
{
for(int i=0;i<n;i++)//初始化
for(int j=0;j<n;j++)
if(i==j) e[i][j]=0;
else e[i][j]=inf;
// memset(e,999999,sizeof(e));//不用上面的初始化,用这个也可以
for(int i=0;i<m;i++)
{
scanf("%d %d %d",&t1,&t2,&t3);
if(e[t1][t2]>t3||e[t2][t1]>t3)
e[t1][t2]=e[t2][t1]=t3;
}
scanf("%d %d",&a,&b);
for(int k=0;k<n;k++)
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];
if(e[a][b]==inf)
printf("-1\n");
else
printf("%d\n",e[a][b]);
}
return 0;
}