fMRI独立成分分析方法(ICA)工具GIFT

软件下载连接:

Software - TReNDS (trendscenter.org)icon-default.png?t=M4ADhttps://trendscenter.org/software/下载完成后,在MATLAB中添加其路径即可。

在MATLAB命令行输入gift。打开窗口页面:

1、点击setup ICA Analysis

新建一个gica文件夹,存储ICA分析的结果,并在该窗口选择gica文件夹。点击OK

出现如下界面: 

 

 Enter Name of Output Files:是输出文件的前缀,这里填的g

第二项是选择fMRI文件,点击select

 询问我们所有文件是否放在了一个文件夹下,因为三个被试的数据在三个文件夹下,所以这里选择NO,接下来让我们选择,Subject的数目,和每个subject数据中session的数目,

 这里根据自己数据而定,比如我在这里选择3个subject,每个subject有1个session, 点击OK

如下所示,会让我们选择三个被试的数据,点击Subject1 Session1

如下所示,进入Subject1的文件夹。会帮我们自动整理好不同文件前缀名的文件,在这里我们选择经过spm预处理,smooth过的文件,即以s开头的文件【1:240】swaf001-003-00*-01.nii,前面的[1:240]表示有240个全脑数据 

 

 点击OK,完成数据选择。同理选择其他两个被试的数据。要更改数据的话,选中Subject数据,点击change重新选择数据。

选择完成后,点击OK

之后,Have you selected the Fmri data, 会变成YES

,如下图所示: 

 

第三项,是会帮你估计component的数目,从1到几十,很费时间。一般选择第四项,Number of IC 默认20即可。第五项为进行ICA分析的方法,可以根据读到的论文方法进行选择,一般默认即可。

参数选择完成之后,点击Done 

 点击OK

会在选定文件夹,生成以g开头的文件。

2.run analysis

点击Run Analysis,选择g_ica_parameter_info.mat文件

 

 点击OK

 选择Maximize Performense, 点击Done。需要稍等一会。会出现下图视窗:

Viewing set 是生成的图像文件,每个被试都会有一个图像(g_sub001_component_ica_s1),所有被试会有一个平均图像(g_mean_component_ica_s_all),每个图像文件包含20个component的全脑图像

Component No:表示你要看哪个component

sort components:一般是task fMRI要用,根据实验设计,对network的相关性进行排序

 Component:表示所有被试查看所有的component,一般选择第一个文件, g_mean_component_ica_s_all,点击display

 

Subject:不能选择view set,可以选择要查看的component

这里选择的是component9 

 为了美观,可以通过load anatomical载入结构像

这里选择ch2bet.nii图像 点击OK

接下来。选择 Orthogonal ,->选择第一个被试的分析结果g_sub001_component_ica_s1

查看第9个component, 点击display

如下图所示:非常漂亮。 

GIFT进行ICA分析的主要功能就是这些了。

### 关于 Gift ICA Component 提取的方法和技术 Gift ICA 组件提取通常涉及独立成分分析ICA),这是一种用于信号处理的技术,旨在分离混合信号中的不同源。虽然提供的参考资料未直接提及 Gift ICA 的具体实现细节,但可以基于相关领域内的常用实践来讨论这一过程。 #### 使用 MATLAB 工具箱进行 Gift ICA Component 提取 MATLAB 是一种广泛应用于科学计算和工程领域的编程环境,在此环境中存在多种工具箱可以帮助执行 ICA 分析。例如,WarpTB - Matlab Toolbox for Warped DSP 可能提供了一些预处理功能,这些功能对于准备数据以便后续应用 ICA 非常有用[^1]。然而,更专门针对 ICA工具可能更适合这项任务。 为了完成 Gift ICA Component 提取,一般会遵循如下流程: - **加载并预处理数据** 数据集应先被导入到工作空间内,并经过必要的清理与标准化处理,以确保其适合进一步分析。 - **选择合适的 ICA 算法** 存在多个不同的 ICA 实现方式;FastICA 和 JADE 是两个常见的选项。根据特定应用场景的需求挑选最恰当的一种算法至关重要。 - **运行 ICA 并获取组件** 应用选定的 ICA 函数至预处理后的数据上,从而获得一组相互统计独立的分量作为输出结果。 - **解释所得组件的意义** 对得到的结果进行评估,识别哪些代表有意义的信息单元——即所谓的 "gift" 或者重要特征向量。 下面是一个简单的 FastICA 示例代码片段展示如何利用 MATLAB 执行上述步骤之一: ```matlab % 加载样本EEG数据文件 load eeg_data.mat; % 进行中心化和平滑滤波等预处理操作... data = preprocess_eeg(eeg_data); % 调用 fastica 函数来进行 ICA 分解 [W, A, S] = fastica(data); ``` 值得注意的是,这里假设 `preprocess_eeg` 是一个自定义函数名,用来表示任何必需的数据前处理措施。实际情况下应当替换为具体的预处理逻辑。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值