RPA-亚马逊商品评论采集。

本文介绍了使用RPA实现跨境电商商品评论监控的流程。从获取Excel商品链接开始,遍历商品详情页,抓取评论并处理图片和视频,最后将数据整理写入Excel。该应用适用于电商行业,通过自然机器人的RPA产品完成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

需求来源:跨境电商客户需要对指定商品的评论进行监控,该应用为上述场景的自动化实现

所属行业:电商

前置条件

暂无

亚马逊网址:Amazon.cn

操作流程

1. 第一步:循环模板表格中的商品链接,前往相应的商品详情页

2. 第二步:抓取页面上的文字元素

1)商品无评论

2)商品评论较少,无【查看全部xx条商品评论】按钮

3)商品评论较多,点击【查看全部xx条商品评论】进入评论页获取,并根据采集数量判断是否需要点击下一页

4)采集数量大于实际评论数量,下一页按钮置灰,直接退出循环

3. 第三步:下载评论图片/视频

若采集范围选中了下载评论图片或下载评论视频,且评论中含有图片或视频,则在指定文件夹中新建一个文件夹,命名为亚马逊商品评论附件,将图片或视频下载到该文件夹中,且将本地路径写入到结果文件的【评论图片/视频】列(命名可以自定义,如1.jpg,2.mp4,只要不重复就行)

4. 第四步:表格处理+网页关闭

将数据都写入结果文件后,处理表格样式

关闭打开的网页,运行完成后最小化浏览器窗口

3.结果展示

 该RPA是通过自然机器人RPA产品软件完成,所属也是自然机器人。欢迎大家了解自然机器人。

主要代码:

1,获取excel文件

            try:
                pass
                if param_value_1 != None and os.path.splitext(param_value_1)[1] not in [".xlsx", ".xls", ".xlsm", ".xlsm"]:
                    raise Exception('模板文件名不正确')
                if not os.path.exists(os.path.dirname(param_value_1)):
                    raise Exception('模板文件所在目录不存在')
                if  os.path.exists(param_value_4) !=True:
                    raise Exception('文件夹路径不存在')
                if hasattr(ntr.app, 'office'):
                    excel_obj_2 = ntr.app.office.excel.open(param_value_1, visible=True, readonly=False, password=r"",write_password=None, dispatch="auto")
                else:
                    excel_obj_2 = ntr.app.microsoft.excel.open(param_value_1, visible=True, readonly=False, password=r"",write_password=None)
                file_path_1 = param_value_1
            except(SDKError,Exception) as e:
                pass
                error = '{0}'.format(e)
                logger.error('Error-打开Excel-出现异常 ' + error)
                Debug_Block_Error('Error-打开Excel-ooown9092t6z', error, True)
                sys.exit(1)

2,获取excel文件信息

try:
                sheet_obj_2 = excel_obj_2.get_sheet()
                cell_row_cnt_1 = sheet_obj_2.row_count()
                iamrko = sheet_obj_2.read(r"A" + str(2) + ":" + r"A" + str(cell_row_cnt_1))
                iamrko = sum(iamrko, [])
except:
                pass
                logger.error("获取excel信息出错")
                sys.exit(1)

3,获取评论,图片,视频的主要代码

    def get_messagee(a,n,excel_cell_value_2,web_text_1):
        try:
            name = re.search(r'<span class="a-profile-name">(.*?)</span>', a)
            name = name.group(1)
            score =
### 影刀 RPA 在电商及跨境电商的具体应用场景 #### 商品推荐与个性化营销 影刀RPA作为一种基于大数据分析和机器学习的技术,在TikTok电商平台的应用中展现了强大的能力。通过对用户行为数据、商品属性以及社交互动信息的综合分析,影刀RPA可以预测用户的兴趣和需求,并提供个性化的商品推荐[^3]。这种智能化推荐不仅提升了用户体验,还显著提高了购物转化率。 #### 数据采集与自动化处理 在亚马逊跨境电商领域,MyAgent工具展示了另一种形式的RPA应用实例。通过自动抓取竞争对手的新品上架时间、定价策略以及Review的增长趋势等关键指标,该工具能够生成详细的SWOT分析报告,帮助企业识别市场空白和潜在商机[^4]。类似的逻辑也可以应用于其他电商平台,从而实现更高效的市场竞争分析。 #### 物流优化与供应链管理 尽管上述引用并未直接提及物流方面的具体内容,但从行业实践中可知,RPA同样适用于解决跨境电商所面临的复杂物流问题。例如,它可以用于跟踪订单状态、协调跨国运输安排或者简化清关手续等一系列操作过程。这些功能对于改善整个供应链效率至关重要。 #### 多语言支持与本地化服务 考虑到跨境电商存在明显的语言障碍和文化差异特点,采用具备自然语言处理(NLP)能力的RPA解决方案将成为未来发展方向之一。此类方案可以帮助企业快速适应不同国家和地区市场需求变化的同时保持高质量客户服务水准。 ```python # 示例代码展示如何模拟简单的商品推荐算法 def recommend_products(user_data, product_catalogue): recommended_items = [] # 假设 user_data 是一个字典结构,包含了用户的浏览历史和其他交互记录 for item in product_catalogue: if matches_user_preferences(item, user_data): # 判断是否符合偏好条件 recommended_items.append(item) return sorted(recommended_items)[:5] # 返回前五个最佳匹配项 def matches_user_preferences(product, userdata): """判断某个产品是否满足特定用户的喜好""" pass # 实际实现需依赖复杂的模型计算 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值