C++学习笔记(十五)——vector练习题

只出现一次的数字

杨辉三角

删除有序数组的重复项

只出现一次的数字II

只出现一次的数字III 

数组中出现超过一半的数字

电话号码的字母组合

 练习子数组的最大和




只出现一次的数字

 思路:简单的位运算,对位运算想深入了解的可以看我这篇文章位运算

class Solution {
public:
    int singleNumber(vector<int>& nums) {
        int n=0;
        for(int i=0;i<nums.size();i++)
        {
            n^=nums[i];
        }
        return n;
    }
};

杨辉三角

class Solution {
public:
    vector<vector<int>> generate(int numRows) {
     vector<vector<int>> a(numRows);
     for(int i=0;i<numRows;i++)
     {
        a[i].resize(i+1);//每行开辟i+个空间都默认为0
         a[i][0]=a[i][i]=1;//保证每行的第一个和最后一个都是1
       for(int j=1;j<i;j++)
       {
       a[i][j]=a[i-1][j-1]+a[i-1][j];//根据规律得出的式子
       }
     }
     return a;
    }
};

删除有序数组的重复项

思路:我们让慢指针 slow 走在后面,快指针 fast 走在前面探路,找到一个不重复的元素就告诉 slow 并让 slow 前进一步。这样当 fast 指针遍历完整个数组 nums 后,**nums[0..slow] 就是不重复元素**。

class Solution {
public:
    int removeDuplicates(vector<int>& nums) {
     int n=nums.size();
     if(n==0)
     {
         return 0;
     }
     int fast=1,low=1;
     while(fast<n)
     {
         if(nums[fast]!=nums[fast-1])
         {
             nums[low]=nums[fast];
             low++;
         }
         fast++;
     }
     return low;
    }
};

只出现一次的数字II

思路:我在力扣上看到了电路门,异或等解决方案,不过我还是觉得哈希表最实用,用的也比较多,我这里只提供哈希表做题思路:

我们可以使用哈希映射统计数组中每个元素的出现次数。对于哈希映射中的每个键值对,键表示一个元素,值表示其出现的次数。

在统计完成后,我们遍历哈希映射即可找出只出现一次的元素。

class Solution {
public:
    int singleNumber(vector<int>& nums) {
    map<int,int> a;
    int n=nums.size();
    int ans=0;
    for(int i=0;i<n;i++)
    {
        a[nums[i]]++;
    }
    for(int i=0;i<n;i++)
    {
        if(a[nums[i]]==1)
        {
            ans=nums[i];
            break;
        }
    }
    return ans;
    }
};

只出现一次的数字III

思路:运用哈希表直接可以做出来,不过这题推荐用异或来做提升自己的思维。我这里就光给出哈希表的答案,异或大家可以去试一下,力扣也给出了官方题解

class Solution {
public:
    vector<int> singleNumber(vector<int>& nums) {
    map<int,int> a;
    vector<int> c;
    for(auto m:nums)
    {
        ++a[m];
    }  
    for(auto m:nums)
    {
        if(a[m]==1)
        {
            c.push_back(m);
        }
    }
    return c;
    }
};

数组中出现超过一半的数字

思路:可以先将数组排序,然后可能的众数肯定在数组中间,然后判断一下,这里其实也不需要判断,因为数组中超过一半的数字就是说中间数肯定是众数

class Solution {
public:
    int MoreThanHalfNum_Solution(vector<int> numbers) {
        sort(numbers.begin(), numbers.end());
        int cond = numbers[numbers.size() / 2];
        int cnt = 0;
        for (const int k :numbers) {
            if (cond == k) ++cnt;
        }
        if (cnt > numbers.size() / 2) return cond;
        return 0;
    }
};

电话号码的字母组合

思路:这题我只能想到用深搜,可以说是模板题,大家可以看看我写的算法博客里有DFS和回溯算法的模板

class Solution {
    string arr[10]={"","","abc","def","ghi","jkl","mno","pqrs","tuv","wxyz"};
public:
    void _letterCombinations(const string& digits,size_t i,string combinStr,vector<string>& strV)
    {
        if(i==digits.size())
        {
            strV.push_back(combinStr);
            return ;
        }
        string str=arr[digits[i]-'0'];
        for(size_t j=0;j<str.size();j++)
        {
            _letterCombinations(digits,i+1,combinStr+str[j],strV);
        }
    }
    vector<string> letterCombinations(string digits) {
      string combinStr;
      vector<string> strV;
      if(digits.empty())
      {
          return strV;
      }
      _letterCombinations(digits,0,combinStr,strV);
      return strV;
    }
};

 练习子数组的最大和

 

思路:动态规划,设动态规划列表 dp,dp[i] 代表以元素 array[i] 为结尾的连续子数组最大和。
状态转移方程: dp[i] = Math.max(dp[i-1]+array[i], array[i]);
具体思路如下:
1.遍历数组,比较 dp[i-1] + array[i] 和 array[i]的大小;
2.为了保证子数组的和最大,每次比较 sum 都取两者的最大值;
3.用max变量记录计算过程中产生的最大的连续和dp[i];

public int FindGreatestSumOfSubArray(int[] array) {
        int sum = 0;
        int max = array[0];
        for(int i=0;i<array.length;i++){
            // 优化动态规划,确定sum的最大值
            sum = Math.max(sum + array[i], array[i]);
            // 每次比较,保存出现的最大值
            max = Math.max(max,sum);
        }
        return max;
}

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

接受平凡 努力出众

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值