降维系列算法进阶(一)22

相关背景

  • 在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析研究寻找规律。多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的工作量。更重要的是在很多情形下,多变量之间可能存在相关性,从而增加了问题分析的复杂性如果分别对每个指标进行分析,分析往往是孤立的,不能完全利用数据中的信息,因此盲目减少指标会损失很多有用的信息,从而产生错误的结论
    请添加图片描述
    在减少需要分析的指标同时,尽量减少原指标包含信息的损失
    ,以达到对所收集数据进行全面分析的目的。由于各变量之间存在一定的相关关系,因此可以考虑将关系紧密的变量变成尽可能少的新变量,使这些新变量是两两不相关的,那么就可以用较少的综合指标分别代表存在于各个变量中的各类信息。
    请添加图片描述

  • 数据的形式是多种多样的,维度也是各不相同的,当实际问题中遇到很高的维度时,如何给他降到较低的维度上?进行属性选择,当然这是一种很好的方法,这里另外提供一种从高维特征空间向低纬特征空间映射的思路。

数据降维

  • 降维就是一种对高维度特征数据预处理方法。降维是将高维度的数据保留下最重要的一些特征,去除噪声和不重要的特征,从而实现提升数据处理速度的目的。在实际的生产和应用中,降维在一定的信息损失范围内,可以为我们节省大量的时间和成本。降维也成为应用非常广泛的数据预处理方法。
  • 数据降维,直观地好处是维度降低了,便于计算和可视化,其更深层次的意义在于有效信息的提取综合及无用信息的摈弃。
  • 请添加图片描述
  • 跟射人先射马,擒贼先擒王一样的道理。抓住主要的,忽略次要的。
  • 请添加图片描述
  • 人的消化系统就是数据(食物)降维过程,变成基本的葡萄糖和氨基酸以及维生素。
  • 请添加图片描述
  • 降维具有如下一些优点:
      1. 减少所需的存储空间
      1. 加快计算速度(例如在机器学习算法中),更少的维数意味着更少的计算,并且更少的维数可以允许使用不适合大量维数的算法。
    • 3)去除冗余特征,例如在以平方米和平方公里在存储地形尺寸方面,两者一起用没有意义(数据收集有缺陷)。
      1. 将数据的维数降低到2D或3D可以允许我们绘制和可视化它,可能观察模式,给我们提供直观感受。
      1. 太多的特征或太复杂的模型可以导致过拟合。
      1. 较简单的模型在小数据集上有更强的鲁棒性

数据降维的方法

  • 主要的方法是线性映射和非线性映射方法两大类。
  • 线性映射方法的代表方法有:PCA(Principal Component Analysis),LDA(Discriminant Analysis)
  • 非线性映射方法的代表方法有:核方法(KernelPCA)、流形学习(ISOMap,LLE)
  • 非负矩阵分解(NMF)是在矩阵中所有元素均为非负数的约束条件之下的矩阵分解方法

PCA降维

  1. PCA(Principal Components Analysis)即主成分分析,是图像处理中经常用到的降维方法。它不仅仅是对高维数据进行降维,更重要的是经过降维去除了噪声,发现了数据中的模式。PCA把原先的n个特征用数目更少的m个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的m个特征互不相关。

  2. PCA方法通过消除数据的相关性,找到一个空间,使得各个类别的数据在该空间上能够很好地分离。在下图中,有一些离散的二维分布点,其中棕色表示一类集合,黄色表示另一类集合,假设这两个类别可以用特征X和特征Y进行描述,由图可知,在X轴和Y轴上这两个类别的投影是重叠的,表明这些点的两个特征X和Y没有表现出突出的识别性。但是两个类的投影在Z轴上区分度较大,显示出很好的识别性。PCA就是这样的一个工具,它可以产生非常好的降维效果。
    请添加图片描述

  3. PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法。PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据本身是密切相关的。其中,第一个新坐标轴选择是原始数据中方差最大的方向,第二个新坐标轴选取是与第一个坐标轴正交的平面中使得方差最大的,第三个轴是与第1,2个轴正交的平面中方差最大的。依次类推,可以得到n个这样的坐标轴。通过这种方式获得的新的坐标轴,我们发现,大部分方差都包含在前面k个坐标轴中,后面的坐标轴所含的方差几乎为0。于是,我们可以忽略余下的坐标轴,只保留前面k个含有绝大部分方差的坐标轴。事实上,这相当于只保留包含绝大部分方差的维度特征,而忽略包含方差几乎为0的特征维度,实现对数据特征的降维处理。
    请添加图片描述

    思考:我们如何得到这些包含最大差异性的主成分方向呢?

    通过计算数据矩阵的协方差矩阵,然后得到协方差矩阵的特征值特征向量,选择特征值最大(即方差最大)的k个特征所对应的特征向量组成的矩阵。这样就可以将数据矩阵转换到新的空间当中,实现数据特征的降维。

    由于得到协方差矩阵的特征值特征向量有两种方法:特征值分解协方差矩阵、奇异值分解协方差矩阵,所以PCA算法有两种实现方法:基于特征值分解协方差矩阵实现PCA算法、基于SVD分解协方差矩阵实现PCA算法。

  4. pca降维原理
    4.1. 协方差和散度矩阵

    样本均值

    x ˉ = 1 n ∑ i = 1 n x i \bar x = \frac{1}{n}\sum_{i=1}^nx_i xˉ=n1i=1nxi

    样本方差

    S 2 = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 S^2 = \frac{1}{n-1}\sum_{i=1}^{n}(x_i - \bar x)^2 S2=n11i=1n(xixˉ)2

    样本X和样本Y的协方差

    C o n v ( X , Y ) = E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] Conv(X,Y) = E[(X - E(X))(Y - E(Y))] Conv(X,<

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值