起风之后,只剩沙丘

机器学习爱好者

排序:
默认
按更新时间
按访问量

LeetCode刷题之路(五)——medium的进阶

Problem 39. Combination Sum   给定一个没有重复数字的数组和一个target,返回所有数组中的数求和为target的组合,每个数字可以重复利用。   **解题思路:**backtracking,该方法可以用来解决一类问题。注意边界值的处理 class Sol...

2018-03-23 11:38:28

阅读数:83

评论数:0

LeetCode刷题之路(四)——medium的进阶

Problem 29:Divide Two Integers   不使用除法、乘法和求余运算,完成两个数的除法,当数值溢出时,返回MAX_INT。   解题思路:第一想法,直接用被除数循环减去除数,每次减得的结果大于0,则结果加1,小于0时循环结束。解法没问题,但是复杂度太高,当用一个很大的数...

2018-03-20 17:19:59

阅读数:74

评论数:0

详解tensorflow中的Attention机制

  最近在做基于attention的唇语识别,无奈网上关于tf中attention的具体实现没有较好的Demo,且版本大多不一致,琐碎而且凌乱,不得不自己翻开源码,阅读一番,收获颇丰,现分享与此。   PS:本文基于tensorflow-gpu-1.4.0版本,阅读前,读者最好对Attentio...

2018-03-13 14:51:31

阅读数:2473

评论数:0

关于ubuntu 16.04下安装opencv-3.2.0及opencv_contrib-3.2.0踩过的各种坑

最近使用opencv进行视频数据预处理过程中用到的了opencv的kcf tracker,在: #include   的时候报错,说没有这个hpp文件,然后发现这个是扩展库里的,即opencv_contrib-3.2.0。然后开始踏上了踩坑之旅。虽然在网上找过很多,但是七零八落,这里把注...

2018-01-27 18:17:43

阅读数:454

评论数:0

干货——LSTM详解,关于LSTM的前生今世

最近在做lip reading领域的研究,设计到C3D和RNN的结合,于是仔细观摩了下LSTM的系列论文,总结如下:PPT总长98页,内容包括: 1.conventional LSTM(含BPTT算法的详细讲解) 2.forget gate的提出 3.Peephole...

2017-12-15 19:04:40

阅读数:424

评论数:0

LeetCode刷题之路(三)——medium的进阶

Problem 2. Add Two Numbers  给定两个链表,每个元素代表一个数位,返回求和结果的链表,譬如: (2→4→3)+(5→6→4)=7→0→8(2\to 4\to 3)+(5\to 6\to 4)=7\to 0\to 8,最开始是最低位,即个位。解题思路:遍历求和,采用尾插法...

2017-12-15 18:50:40

阅读数:75

评论数:0

神经网络知识点汇总——RNN

RNN,循环神经网络是一种最新的神经网络结构,和CNN不同的是,它不光在spatial上有一个forward的方向,同时还有一个依赖于时间的传播方向。其中最出名的,当属LSTM(long short time memory)长短期记忆网络。RNN architecture  传统的RNN的结构如上...

2017-09-13 15:14:54

阅读数:242

评论数:0

神经网络知识点汇总——CNN

CNN——卷即神经网络(Convolutional Neural Network),主要应用来图像处理领域。它的网络结构中有两个不同于FNN的核心的地方:卷积层和池化层。并且它的正则化技术相对于FNN也有一定的修改。 CNN architecture   CNN中,主要由卷积操作和池化操作...

2017-09-12 14:50:20

阅读数:347

评论数:0

神经网络知识点汇总——FNN

本文基于文章,对神经网络的知识点做一个总结,可能不会对某些概念性的东西做详细介绍,因此需要对神经网络有基本的了解。 FNN:前馈神经网络   神经网络的最基本也是最经典的形式,结果包括输入层,隐藏层和输出层,根据隐藏层的多少,分为shallow network和deep network(d...

2017-09-08 16:44:12

阅读数:400

评论数:0

LeetCode刷题之路(二)——easy的开始

这里依旧以easy的题目为主,因为个人代码量比较少,通过easy题来训练良好的代码习惯,为后面hard的题目做准备。 Problem 67:Add Binary   给定两个二进制字符串,返回求和结果的二进制字符串,如,输入a=’11’,b=’1’,输出’100’。 解题思路:第一种思路直接...

2017-08-19 14:41:36

阅读数:169

评论数:0

LeetCode刷题之路(一)——easy的开始

从今天开始给自己立个flag,每天刷几个算法题,并将过程中遇到的问题或者碰到的一些比较巧妙的思路记录下来,供以后查阅,写在这里也算是对自己的监督。   解题思路不限于比较难的题的解题思路,对于某些简单的题目比较巧妙的解法也进行说明。   题目由易到难 Problem 1:Two sum ...

2017-08-15 15:13:28

阅读数:314

评论数:0

矩阵分析与应用(四)——逆矩阵、广义逆矩阵和Moore-Penrose逆矩阵

逆矩阵  逆矩阵的定义:如果对于一个方阵AA,存在一个方阵BB,使得AB=BA=IAB=BA=I,那么我们称BB为AA的逆矩阵,记做:A−1=B=1|A|A∗A^{-1}=B=\frac{1}{\vert A\vert}A^*,这里A∗A^*代表伴随矩阵。   一个n∗nn*n的方阵存在逆矩阵的...

2017-08-07 17:02:20

阅读数:1145

评论数:0

最全的机器学习中的优化算法介绍

在机器学习中,有很多的问题并没有解析形式的解,或者有解析形式的解但是计算量很大(譬如,超定问题的最小二乘解),对于此类问题,通常我们会选择采用一种迭代的优化方式进行求解。   这些常用的优化算法包括:梯度下降法(Gradient Descent),共轭梯度法(Conjugate Gradient...

2017-08-06 12:57:02

阅读数:3806

评论数:2

sklearn浅析(八)——近邻算法

近邻(Nearest Neighbor)算法既可以用于监督学习(分类),也可以用于非监督学习(聚类),它通过按照一定方法查找距离预测样本最近的n个样本,并根据这些样本的特征对预测样本做出预测。   在sklearn里,所有的近邻算法位于sklearn.neighbors下,共包含下列13个方法:...

2017-08-05 14:10:24

阅读数:785

评论数:0

矩阵分析与应用(三)——基与Gram-Schmidt正交化

nn维Euclidean空间只有一个,但是nn维向量空间却有无穷多个,如x={0,0,α,β,γ}x=\{0,0,\alpha,\beta,\gamma\}和y={1,5,α,β,γ}y=\{1,5,\alpha,\beta,\gamma\}就是两个完全不同的5维向量空间,虽然他们都在5阶Eucl...

2017-08-03 11:53:28

阅读数:573

评论数:0

矩阵分析与应用(二)——内积与范数

常数向量的内积与范数  两个m×1m×1的向量之间的内积(点积)定义为: ⟨x,y⟩=xHy=∑i=1mx∗iyi\langle x,y\rangle=x^Hy=\sum_{i=1}^m x_i^*y_i  其夹角定义为: cosθ=⟨x,y⟩⟨x,x⟩⟨y,y⟩−−−−−−−−−√=xHy∥...

2017-07-31 11:57:30

阅读数:2222

评论数:0

矩阵分析与应用(一)——集合的基本运算和内积空间

矩阵相关   幂等矩阵:对于方阵AA,如果A2=AA^2=A,则称为幂等矩阵   对合矩阵:对于方阵AA,如果A2=IA^2=I,则称为对合矩阵 集合的基本运算 A∪B={x∈X:x∈A or x∈B}A\cup B =\{x \in X: x \in A\space or \space ...

2017-07-27 19:35:28

阅读数:298

评论数:0

奇异值分解与最小二乘问题

很多线性回归器的损失函数为均方误差: loss=∥Xw−y∥22loss=\Vert Xw-y\Vert_2^2   求解模型参数,需要最小化损失函数: min∥Xw−y∥22min \Vert Xw-y\Vert_2^2X∈Rm∗n,w∈Rm,,X∈Rn,X \in R^{m*n},w \...

2017-07-24 19:49:13

阅读数:1517

评论数:1

sklearn浅析(七)——Support Vector Machines

支持向量机以感知机为原型,但是它的能力要远远强于感知机,svm在回归,分类和异常检测上都有重要作用,并且可以通过kernel trick实现高维数据的非线性分类。关于svm的详细介绍请自行查找,可参考[统计学习方法 李航]和[cs229课程 Andrew Ng]   sklearn里面提供了很多...

2017-07-24 16:28:15

阅读数:1087

评论数:0

sklearn浅析(六)——Kernel Ridge Regression

Kernel Ridge Regression即使用核技巧的岭回归(L2正则线性回归),它的学习形式和SVR(support vector regression)相同,但是两者的损失函数不同:KRR使用的L2正则均方误差;SVR使用的是待L2正则的ϵ\epsilon-insensitive los...

2017-07-24 15:21:48

阅读数:3408

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭