Stable Diffusion绘画 | ControlNet应用-Scribble (涂鸦)

Scribble (涂鸦)

使用该算法生成的线稿,线条最粗最随意,常用于抓取画面的大体轮廓,让AI进行创意发挥。

提示词输入 a panda,生成图片如下:

将提示词换成 a dog,生成图片如下:

今天先分享到这里~


写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
<think>好的,用户想知道如何通过ControlNet提升Stable Diffusion生成图像的一致性。我需要先回忆ControlNet的基本原理和它在Stable Diffusion中的作用。ControlNet通过添加额外的条件控制,比如边缘检测、姿态估计等,来引导生成过程,这样生成的图像会更符合用户输入的结构或风格。 首先,得解释ControlNet的工作原理。它通过训练一个并行的网络结构,将控制条件(如线稿、深度图等)与原有的扩散模型结合,确保生成图像在结构和内容上与输入条件一致。这部分可能需要引用文献中的内容,比如引用[1]提到的Stable Diffusion XL的优化,或者引用[2]中关于MLSD线条检测的应用。 然后,用户关心的是方法。我需要列出具体的操作步骤,比如选择合适的控制类型、调整控制权重和终止时机。例如,引用[3]提到调整Control Weights和Ending Control Steps,这可能影响生成结果的一致性。此外,引用[4]中提到的安装和配置ControlNet的步骤也需要提及,确保用户知道如何在Web UI中使用它。 接下来,可能要考虑多ControlNet的组合使用,比如同时使用线稿和深度图来增强控制。同时,预处理输入的图像质量也很重要,比如清晰的线稿能带来更好的效果。引用[2]中的Scribble涂鸦模型可能在这里有用,允许用户通过简单涂鸦来保持结构一致。 还要注意参数调整,如引导强度、步数等,这些都会影响最终结果。用户可能需要多次实验来找到最佳配置。最后,结合用户提供的示例问题,生成相关问题,帮助用户进一步学习,比如如何安装ControlNet或调整参数。 需要确保回答结构清晰,分点说明方法和原理,并正确引用提到的资料。同时,语言要简洁,避免技术术语过多,让用户容易理解。</think>### Stable Diffusion 使用 ControlNet 提升生成图片一致性的方法与原理 #### 核心原理 ControlNet 通过添加**结构化条件**(如边缘检测、深度图、姿态估计等)引导图像生成过程,使输出与输入条件保持几何或语义上的一致性。其技术核心是将原始扩散模型的权重冻结,并训练一个并行的“条件分支”网络,通过零卷积层逐步融合控制信号[^1][^4]。这种设计既能保留原模型的生成能力,又能通过外部条件(如线稿、涂鸦)约束生成结果的结构。 #### 具体方法 1. **选择控制类型** - 使用 $Canny$ 边缘检测或 $MLSD$ 直线检测(适合建筑、室内场景)[^2],保留目标物体的轮廓。 - 采用 $Scribble$ 涂鸦模式,通过简笔画定义大致结构[^2]。 - 应用 $Depth$ 深度图控制空间层次,或 $OpenPose$ 控制人物姿态。 2. **参数调整策略** - **控制权重(Control Weight)**:数值范围 $0-2$,值越高对控制条件的服从性越强,但过高可能导致细节僵硬[^3]。 - **终止时机(Ending Control Step)**:设置控制信号在生成过程中的退出步数(如 $0.8$ 表示在前 $80\%$ 步骤生效),后期释放生成自由度以增加细节。 - **引导强度(Guidance Scale)**:与提示词语义配合调整,建议范围 $7-15$。 3. **多条件组合** 可叠加多个 ControlNet 单元(如同时使用线稿+深度图),通过权重分配实现更精准的控制。 ```python # ControlNet 典型调用逻辑(以线稿控制为例) 输入图像 → Canny边缘检测 → 生成条件图 ↓ Stable Diffusion XL + ControlNet权重 → 输出符合线稿结构的图像 ``` #### 应用示例 若需生成**多视角一致的角色形象**: 1. 先通过 $Canny$ 固定角色轮廓 2. 叠加 $Reference$ 模式保持色彩风格统一 3. 设置控制权重为 $1.2$,终止步数为 $0.7$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值