微积分-第一章函数1

第一章函数

1.1 函数的定义

简单来说,函数就是一种规则,它将一个值作为输入映射到另一个值作为输出。如 f ( x ) = 5 x f(x)=5x f(x)=5x。其中f称为函数, 5 x 5x 5x 是将输入 x x x映射到输出的规则, f ( x ) f(x) f(x)称为函数值或输出, x x x称为输入。这个函数就是接受x作为输入,将x乘以5作为值输出。

输入x来自于称为定义域的集合。输出来自称为值域的集合。

让我们看更多函数的例子:

  • f ( x ) = 5 x 3 f(x)=5x^3 f(x)=5x3,大家可以尝试自己划分这个函数中的各个部分。如果没有明确说明定义域,则默认定义域尽可能包括实数集更多的部分。对于这个例子来说就是实数集R。那值域呢?让我们看函数的映射规则,这个函数的规则是:将任何数变为自己的立方并乘以5。值域是所有可能输出的所组成的集合。这个映射规则的输出实数集R中的任意内容。而定义域是R,所以它的值域也是R。
  • 我们再来看函数 g ( x ) = x g(x)=\sqrt{x} g(x)=x ,它的定义域是什么呢?我们知道平方根下的数必须大于等于0,所以它的定义域应该也是大于等于0。用集合表示则是 { x ∣ x ≥ 0 , x ∈ R } \{x|x \geq 0, x \in R\} {xx0,xR}。由于平方根函数将非负实数映射到非负实数,所以它的值域自然也是非负数。
  • 考虑函数 h ( x ) = 1 x h(x)=\frac{1}{x} h(x)=x1。我们知道分数的分母不能为0,所以它的定义域是 { x ∣ x ! = 0 } \{x|x != 0\} {xx!=0}。我们称函数 h h h x = 0 x=0 x=0处没有定义。
  • 考虑两个函数 f ( x ) = x 2 x f(x)=\frac{x^2}{x} f(x)=xx2 h ( x ) = x h(x)={x} h(x)=x。它们是同一个函数吗?或许有人认为,函数 f f f可以简化为 f ( x ) = x f(x)=x f(x)=x,所以 f f f等于 h h h。这是不完全对的,正确的说法是:函数 f f f简化为 f ( x ) = x f(x)=x f(x)=x,当且仅当 x ≠ 0 x \neq 0 x=0。这是因为分母不为0,在x=0时函数无定义。所以,虽然函数 f ( x ) = x 2 x f(x)=\frac{x^2}{x} f(x)=xx2 和函数 h ( x ) = x h(x)=x h(x)=x 在大部分情况下有相同的值,但由于在 x = 0 x=0 x=0 f ( x ) f(x) f(x) 是未定义的,所以我们不能说 f f f h h h 是完全相同的函数。我们在考虑函数的时候一定不可以抛开定义域。所以我们不能说函数 f f f等于函数 h h h。那么怎么让函数 h h h等于函数 f f f呢?很简单限制它的定义域为 { x ∣ x ≠ 0 } \{x | x \neq 0\} {xx=0}就可以了。只有当两个函数的映射规则和它的定义域同时相等时,这两个函数才相等。

我们来总结一下要点:

  • 如果一个函数没有明确说明定义域,则默认定义域尽可能包括实数集更多的部分。
  • 值域是所有可能输出的所组成的集合。
  • 函数是一种映射,更为准确的说:函数被定义为从一个集合(称为定义域)到另一个集合(称为值域)的唯一映射。这意味着,定义域中的每一个元素,都会通过函数被映到射值域中唯一确定的元素。一个函数对于同一个输入不会存在两个或更多个输出。
  • 在数学中,如果两个函数在相同的定义域内有相同的映射规则(即,对于定义域内的每一个输入,两个函数都给出相同的输出),那么我们可以说这两个函数是相等的。

1.2 函数的定义域

在上一节中说到,如果一个函数没有明确说明定义域,则默认定义域尽可能包括实数集更多的部分。这一节我们具体讲一下如何求解定义域。

求解函数的定义域,就是要找出函数的规则中所不能接收的值(导致函数无法计算的值)构成的集合S,我们再取集合S相对于实数集R的补集。这个补集就是函数的定义域。

这里列举一些常见的情况:

  • 分式:分式的分母不能为0
  • 平方根:平方根下的数必须大于0。不只是平方根,对于四次方根、六次方根等等,这些偶次方根下的数都必须大于0.
  • 对数:对数的底数必须大于0且不等于1的实数,真数必须大于0

考虑函数 f ( x ) = x x − 2 f(x)=\frac{\sqrt{x}}{x-2} f(x)=x2x 的定义域是什么?

我们可以看到式子中出现了分式,那么我们就需要注意分母不能为0。这里式子的分母是 x − 2 x-2 x2,所以 x ≠ 2 x \neq 2 x=2。处理完了分母,再来看分子。分子中出现了根号。这说明 x ≥ 0 x \geq 0 x0。综上所述我们有 x ≠ 2 x \neq 2 x=2 x ≥ 0 x \geq 0 x0。这用集合表示为 { x ∣ x ≠ 2 且 x ≥ 0 , x ∈ R } \{x|x \neq 2 且x \geq 0,x \in R\} {xx=2x0,xR}

我们通常不使用集合描述定义域而是使用区间描述。上述定义域可以用区间描述为 [ 0 , 2 ) ∪ ( 2 , + ∞ ) [0,2) \cup(2,+\infty) [0,2)(2,+)

让我们来看更难一点的例子
f ( x ) = l o g 2 ( x − 5 ) x 2 + x − 6 f(x)=\frac{log_{2}(x-5)}{\sqrt{x^2+x-6}} f(x)=x2+x6 log2(x5)

这是一个分式,分母不能为0,即 x 2 + x − 6 ≠ 0 \sqrt{x^2+x-6} \neq 0 x2+x6 =0。且平方根下必须大于等于0,所以需要
x 2 + x − 6 > 0 x^2+x-6 > 0 x2+x6>0
求解这个不等式得到 x > 2 x >2 x>2
我们在看来分子,分子是一个对数。对数的真数大于0,所以需要
x − 5 > 0 x-5>0 x5>0
x > 5 x >5 x>5。这个函数的定义域就是 x > 2 x >2 x>2 x > 5 x >5 x>5的交集: ( 5 , + ∞ ) (5,+\infty) (5,+)

注释

集合

集合是由一些明确的或者不明确的元素所构成的,这些元素被称为集合的成员。
集合有两种表示方式:列举法和描述法。

  • 列举法:直接列出集合中的元素,如:集合 A = { 1 , 2 , 3 } A=\{1,2,3\} A={1,2,3}
  • 描述法:通过描述元素的性质来定义集合。如:集合 B = { x ∣ x > 0 , x ∈ R } B=\{x|x>0,x \in R\} B={xx>0xR}。这个集合描述的是所有大于0的实数。其中 R R R表示的是所有实数的集合,而符号 ∈ \in 表示的是属于, x ∈ R x \in R xR 表示的就是 x属于R,换句话说,x是实数集中的一个元素。
子集

如果集合B中包含集合A的所有元素,我们则称集合A是集合B的一个子集。记作 A ⊆ B A \subseteq B AB

补集

我们一般将涉及到所有元素的集合称作全集U。而A相对于U的补集是指的在U中除去集合A中所有元素后剩余的元素构成的集合。记作 B = ∁ U A B=\complement_{U}A B=UA。其中B是A相对于U的补集。它满足下述关系
B = U − A B=U-A B=UA

交集

交集C指的是集合A和集合B共有的那一部分元素组成的集合。记作 C = A ∩ B C=A \cap B C=AB

并集

并集C指的是集合A的所有元素加上集合B中所有元素构成的集合。记作 C = A ∪ B C=A\cup B C=AB。需要注意的是集合内的元素是具有不重复性的。

指数

这里对指数做一个简单的介绍,在后续的章节会具体讲解。

形如 a n a^n an的表达式称为指数,其中a是底数,n是指数。这个表达式表示的是a的n次方,即a乘以自己n次。
指数具有一些性质:

  • 任何数的0次方都等于1(除了0的0次方,这在数学中是没有定义的)。
  • 任何数的1次方等于它自身。
  • 负指数表示的是对于底数取倒数,在乘以负指数的绝对值次方。即 a − n = 1 a n a^{-n}=\frac{1}{a^n} an=an1
  • 底数必须是大于0且不等于1的实数。

对数

形如 log ⁡ a c \log_a c logac的表达式称为对数,其中 a a a称为底数, c c c称为真数。对数是对指数的逆运算。对数表示的是在以a为底的指数运算中,使得运算结果等于c的指数b。换句话说,如果 a b = c a^b=c ab=c,则 log ⁡ a c = b \log_a c=b logac=b

对数具有一些性质:

  • log ⁡ a 1 = 0 \log_a 1 = 0 loga1=0,因为任何数的0次方都等于1。
  • log ⁡ a a = 1 \log_a a = 1 logaa=1,因为任何数的1次方都等于它自己。
  • log ⁡ a a b = b \log_a a^b=b logaab=b
  • 因为对数是指数的逆运算,所有对数的底数也必须是大于0且不等于1的实数。
  • 对数的真数必须大于0,因为任何大于0的数的指数运算的结果都是大于0的。

区间

区间表示的是一个由两个端点确定集合,这个集合是实数集的子集。它表示的是所有在某个范围内的实数。

[ a , b ] [a,b] [a,b] 表示的是所有大于等于a且小于等于b的实数的集合。这称为闭区间。

( a , b ) (a,b) (a,b) 表示示的是所有大于a且小于b的实数的集合。这称为开区间。

[ a , b ) [a,b) [a,b) 表示的是所有大于等于a且小于b的实数的集合。这称为左闭右开区间。

( a , b ] (a,b] (a,b] 表示的是所有大于a且小于等于b的实数的集合。这称为左开右闭区间。

( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 表示的是从负无穷到正无穷。如果一端是无穷,则这一端的括号均为小括号。这是因为无穷是取不到的。

+ ∞ +\infty + − ∞ -\infty

∞ \infty 表示的是无穷(infinity),无穷是一个表示极限大或极限小的概念。在数学表达式中,无穷大通常表示为 “+∞”,无穷小表示为 “-∞”。无穷并不是真正的数,而是一种表示极限的符号。

通常情况下,正无穷可以省略加号,直接写作"∞"

若有问题,恳请指正
未完待续

  • 69
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值