第三章 指数函数与对数函数
3.1 基础定义
大家还记得在第一章函数中关于指数和对数的注释吗?让我们简单的回顾一下。
3.1.1 指数
简单的来说,指数函数是指将一个实数作为底数提升为指数次方的幂。
底 数 指数 底数^{指数} 底数指数
例如: 2 3 2^{3} 23是以2为底数3为指数的一个幂。 f ( x ) = 2 x f(x)=2^x f(x)=2x则是以2为底的指数函数。
为了使指数便于定义,规定其底数必须大于0且不能等于1,指数是任意实数。指数具有许多的法则和性质,可以帮助我们进行指数运算。对于任意底数 b > 0 b>0 b>0,和任意正数 x x x和 y y y:
- b 0 = 1 b^0=1 b0=1 任意底数的零次幂都是1
- b 1 = b b^1=b b1=b 任意底数的1次幂都是它自身
- ( b x ) y = b x y (b^x)^y=b^{xy} (bx)y=bxy 当取幂的幂时,将其指数相乘
- b x × b y = b ( x + y ) b^x \times b^y=b^{(x + y)} bx×by=b(x+y) 同底数的两个幂相乘时,将其指数相加
- b x b y = b x − y \frac{b^x}{b^y} = b^{x-y} bybx=bx−y 同底数的两个幂相除时,将分子的指数减去分母的指数
- b y x = b y x b^{\frac{y}{x}}=\sqrt[x]{b^y} bxy=xby