微积分-第三章指数函数与对数函数

本文介绍了指数函数和对数函数的基本定义,包括指数运算的规则,如底数>0且非1的条件,以及对数的逆运算性质。文章还探讨了函数的增减性、定义域和值域,并提及了换底公式。最后指出指数函数具有反函数,其图像特征和对数函数的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第三章 指数函数与对数函数

3.1 基础定义

大家还记得在第一章函数中关于指数和对数的注释吗?让我们简单的回顾一下。

3.1.1 指数

简单的来说,指数函数是指将一个实数作为底数提升为指数次方的幂。
底 数 指数 底数^{指数} 指数
例如: 2 3 2^{3} 23是以2为底数3为指数的一个幂。 f ( x ) = 2 x f(x)=2^x f(x)=2x则是以2为底的指数函数。

为了使指数便于定义,规定其底数必须大于0且不能等于1,指数是任意实数。指数具有许多的法则和性质,可以帮助我们进行指数运算。对于任意底数 b > 0 b>0 b>0,和任意正数 x x x y y y:

  • b 0 = 1 b^0=1 b0=1 任意底数的零次幂都是1
  • b 1 = b b^1=b b1=b 任意底数的1次幂都是它自身
  • ( b x ) y = b x y (b^x)^y=b^{xy} (bx)y=bxy 当取幂的幂时,将其指数相乘
  • b x × b y = b ( x + y ) b^x \times b^y=b^{(x + y)} bx×by=b(x+y) 同底数的两个幂相乘时,将其指数相加
  • b x b y = b x − y \frac{b^x}{b^y} = b^{x-y} bybx=bxy 同底数的两个幂相除时,将分子的指数减去分母的指数
  • b y x = b y x b^{\frac{y}{x}}=\sqrt[x]{b^y} bxy=xby
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值