查看GPU个数

打开终端输入命令:

lspci | grep -i vga | grep -i nvidia | wc -l

即可查看

Python中,你可以通过多种库来检查系统中的GPU数量。最常用的是使用`nvidia-ml-py3`库(也称为`pynvml`),这是一个用于访问NVIDIA管理图书馆(NVML)功能的Python绑定,可以获取有关NVIDIA GPU的各种信息。 下面是如何检测可用GPU的数量的一个简单例子: ```python import pynvml def get_gpu_count(): try: # 初始化nvml pynvml.nvmlInit() # 获取设备计数并返回 deviceCount = pynvml.nvmlDeviceGetCount() print(f"Detected GPUs: {deviceCount}") return deviceCount except pynvml.NVMLError as error: print("Error fetching GPU information:", str(error)) finally: # 关闭nvml连接 try: pynvml.nvmlShutdown() except: pass if __name__ == "__main__": gpu_num = get_gpu_count() ``` 上述代码会初始化NVML库,并调用`nvmlDeviceGetCount()`函数以获得当前计算机上安装了多少块支持CUDA计算的NVIDIA显卡。如果过程中发生错误,则捕获异常以防程序崩溃;最后确保关闭了对NVML库的连接。 此外,在某些深度学习框架如PyTorch或TensorFlow中也有内置的方法可以直接查询系统的GPU情况。例如在PyTorch中,可以通过`torch.cuda.device_count()`直接得到可见的GPU数目: ```python import torch print(torch.cuda.device_count()) ``` 对于Tensorflow用户来说,也可以很方便地利用其API来进行类似的操作。 请注意,如果你是在一个远程服务器或者虚拟环境中工作的话,实际看到的GPU数量可能会受到环境配置的影响而并非物理硬件的真实数值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值