相似矩阵与合同矩阵



相似矩阵


定义

A , B A,B A,B 都是 n n n 阶方阵,若存在可逆矩阵 T T T ,使
B = T − 1 A T B=T^{-1}AT B=T1AT
则称 A A A B B B 相似,称 A A A B B B 的这种变换为相似变换,称这个矩阵 T T T 为相似变换矩阵。

A A A 与一个对角矩阵 D D D 相似,则称 A A A 可以相似对角化

性质

  • 自反性
  • 对称性
  • 传递性

定理

A A A B B B 相似,则 A A A B B B 的特征多项式相同。

推论

  • A A A B B B 相似,则 A A A B B B 的特征值相同。反之未必成立,即两个矩阵的特征值相同,他们不一定相似。
  • A A A B B B 相似,则 t r ( A ) = t r ( B ) tr(A) = tr(B) tr(A)=tr(B) ,且 ∣ A ∣ = ∣ B ∣ |A| = |B| A=B
  • n n n 阶方阵 A A A 与对角矩阵 D = d i a g ( λ 1 , λ 2 , … , λ n ) D=diag(\lambda_1, \lambda_2, \dots, \lambda_n) D=diag(λ1,λ2,,λn) 相似,则 λ 1 , λ 2 , … , λ n \lambda_1, \lambda_2, \dots, \lambda_n λ1,λ2,,λn A A A n n n 个特征值。


合同矩阵


定义

给定两个 n n n 阶方阵 A A A B B B ,如果存在可逆矩阵 C C C ,使得
B = C ′ A C B=C'AC B=CAC
则称 A A A B B B 合同。


性质

  • 自反性
  • 对称性
  • 传递性

推论

对任一实对称矩阵 A A A ,存在正交矩阵 P P P ,使 P − 1 A P = P ′ A P = D P^{-1}AP = P'AP = D P1AP=PAP=D 为对角矩阵,因此,任一实对称矩阵都与对角矩阵合同



  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lgxo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值