比requests还好用的Python高效库,效率提升一倍

Python开发者们最常用的库之一就是requests,它以简单易用的API和强大的功能深受喜爱。然而,随着爬取任务的复杂性增加,requests的局限性逐渐显现。一些更为高效、功能更强大的爬虫库开始进入开发者的视野

那么,有没有比requests更高效、更适合复杂爬虫任务的Python库?这些库又是如何帮助开发者更快速、更智能地进行网页数据采集的?

在众多Python爬虫库中,httpxaiohttp无疑是两个突出的代表。httpx不仅保留了requests的简洁性,还提供了异步支持,让爬虫任务的并发处理能力大幅提升。而aiohttp则凭借其对异步I/O的出色支持,成为处理大规模爬取任务时的理想选择。比如在一个涉及百万级页面的爬取项目中,使用aiohttp的开发团队将原本需要数天的任务缩短到了数小时,大大提高了效率。

嗨,大家周二好呀,今天看到九月的中秋节和国庆节需要调休时,无语至极...
废话少说,今天来聊聊一个比requests还好用的Python高效爬虫库,httpx。

最近公司在搞Python后端项目重构,整个后端逻辑都变成了“异步”协程的方式实现。看着满屏的async和await,测试内心那叫一个崩溃。之前对协程有点了解,但这次是真正上手了,今天就把学习成果分享给大家。

什么是协程?

协程是一种比线程更轻量级的存在。简单来说,协程是用户空间内的“轻量级线程”,由程序员自己管理。和多线程相比,协程有几个显著的优势:

  1. 控制权在用户手中:线程的控制权在操作系统手中,而协程完全由用户控制,这减少了上下文切换的开销,提高了效率。

  2. 更轻量:线程需要分配较大的栈空间(通常是MB级别),而协程只需要几KB,因此可以在相同内存中运行更多的协程。

  3. 避免锁机制:因为协程是单线程的,不存在多线程的资源竞争问题,不需要加锁,避免了死锁和竞争状态,提高了执行效率。

协程特别适合用于I/O密集型任务,例如网络请求、文件读写等,但不适用于CPU密集型任务。因为协程的本质是单线程,在处理大量计算任务时,还是需要多进程或多线程来分担。

为什么选择httpx?

搞清楚了协程,咱们来看看今天的主角——httpx。httpx是一个支持异步HTTP请求的库,几乎继承了requests的所有特性,可以认为是requests的“升级版”。对于那些已经习惯了requests的开发者来说,httpx的上手几乎没有学习成本。

安装httpx非常简单,只需要在命令行中执行:

pip install httpx

使用httpx进行异步请求

先来看看如何用httpx实现异步HTTP请求吧。

同步请求示例

先回顾一下同步请求的写法,这里用requests库来做个对比:

import requests
import time


def sync_main(url, sign):
    response = requests.get(url)
    print(f'sync_main: {sign}: {response.status_code}')

sync_start = time.time()
[sync_main('http://www.baidu.com', i) for i in range(200)]
sync_end = time.time()
print(f'Total time for sync requests: {sync_end - sync_start} seconds')

​​​​​

这段代码发送了200次同步HTTP请求,并记录了总耗时。运行结果可能如下:

sync_main: 0: 200
...
sync_main: 199: 200
Total time for sync requests: 16.6 seconds

可以看到,同步请求的总耗时约为16.6秒。

异步请求示例

现在,用httpx来实现相同的功能,但这次使用异步请求:

import asyncio
import httpx
import time


async def async_main(url, sign):    
    async with httpx.AsyncClient() as client:        
        response = await client.get(url)        
        print(f'async_main: {sign}: {response.status_code}')

async def main():    
    tasks = [async_main('http://www.baidu.com', i) for i in range(200)]    
    await asyncio.gather(*tasks)

async_start = time.time()
asyncio.run(main())
async_end = time.time()
print(f'Total time for async requests: {async_end - async_start} seconds')

这段代码用httpx实现了异步HTTP请求。运行结果可能如下:

async_main: 0: 200
...
async_main: 199: 200
Total time for async requests: 4.5 seconds

可以看到,异步请求的总耗时约为4.5秒,比同步请求缩短了近73%!

深入理解httpx

httpx不仅仅是requests的替代品,它还提供了一些额外的功能,使其在实际应用中更加强大和灵活。

1. 并发请求

使用httpx,我们可以轻松地实现并发请求,提高数据抓取效率。例如:

import asyncio
import httpx


async def fetch(url):
    async with httpx.AsyncClient() as client:
        response = await client.get(url)
        return response.text

async def main(urls):
    tasks = [fetch(url) for url in urls]
    results = await asyncio.gather(*tasks)
    return results

urls = ['http://example.com' for _ in range(100)]
results = asyncio.run(main(urls))
print(f'Fetched {len(results)} pages')

这段代码演示了如何使用httpx并发地抓取多个网页,并将结果存储在一个列表中。通过这种方式,可以显著提高爬虫的效率。

2. 异步上下文管理

httpx提供了异步上下文管理器,确保在异步操作中正确地管理资源。例如:

import httpx
import asyncio


async def fetch(url):
    async with httpx.AsyncClient() as client:
        response = await client.get(url)
        return response

async def main():
    response = await fetch('http://example.com')
    print(response.text)

asyncio.run(main())

在这个示例中,async with语句确保在异步操作完成后正确关闭HTTP客户端。

3. 超时和重试机制

在网络请求中,超时和重试机制是非常重要的。httpx提供了灵活的超时和重试配置:​​​​​​​

import httpx
import asyncio


async def fetch(url):
    async with httpx.AsyncClient(timeout=5.0) as client:
        response = await client.get(url)
        return response

async def main():
    try:
        response = await fetch('http://example.com')
        print(response.text)
    except httpx.TimeoutException:
        print('Request timed out')

asyncio.run(main())

​​​​​​​这里设置了一个5秒的超时时间,如果请求超过这个时间未完成,将抛出一个TimeoutException。

httpx在实际项目中的应用

虎哥最近在实际项目中使用httpx进行数据抓取,不得不说,效率真的提升了不少。尤其是在处理需要大量并发请求的场景时,httpx简直就是利器。

1. 数据抓取

在一个数据抓取项目中,需要抓取上千个页面的数据。使用httpx后,不仅代码简洁了很多,效率也提高了一倍以上。例如:

import asyncio
import httpx


async def fetch_data(url):
    async with httpx.AsyncClient() as client:
        response = await client.get(url)
        return response.json()

async def main(urls):
    tasks = [fetch_data(url) for url in urls]
    results = await asyncio.gather(*tasks)
    for result in results:
        print(result)

urls = [f'http://api.example.com/data/{i}' for i in range(100)]
asyncio.run(main(urls))

2. 接口测试

在接口测试中,httpx的异步特性也大有用武之地。例如,需要并发地测试多个API接口,可以使用以下代码:​​​​​​​

import asyncio
import httpx


async def test_api(url):
    async with httpx.AsyncClient() as client:
        response = await client.get(url)
        assert response.status_code == 200

async def main(urls):
    tasks = [test_api(url) for url in urls]
    await asyncio.gather(*tasks)

urls = [f'http://api.example.com/test/{i}' for i in range(100)]
asyncio.run(main(urls))

end

如果你正在寻找一款能够替代requests,并且在性能和功能上更为出色的Python爬虫库,建议试试httpxaiohttp。它们不仅能满足你对爬虫效率的要求,还能大大简化代码的编写。

总的来说,httpx是一个非常强大且高效的HTTP请求库,尤其适合在需要大量并发请求的场景下使用。

如果你还在使用requests,不妨尝试一下httpx,感受一下异步请求带来的效率提升。

在选择爬虫库时,了解项目需求和库的特性至关重要。虽然requests仍然是处理简单任务的好帮手,但在面对复杂的大规模爬取任务时,httpxaiohttp无疑会为你带来更高的效率和更好的开发体验。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值