- 博客(2436)
- 问答 (2)
- 收藏
- 关注
原创 暑假两个月学习AI产品经理详细路线,看这一篇就够了
以下是一个暑假期间学习AI产品经理的详细路线,分为八个周来进行:第1周:了解AI产品管理基础阅读材料:《人工智能:一种现代的方法》了解AI基础。《人人都是产品经理》了解产品管理基础。在线课程:Coursera上的“人工智能基础”课程。edX上的“产品管理基础”课程。实践:调研市场上现有的AI产品,分析其功能、用户群体和市场定位。第2周:深入学习AI技术在线课程:Udacity的“深度学习纳米学位”基础课程。
2024-07-19 09:57:24
2420
2
原创 AI大模型从零到专家:全面教程,一课掌握!
坚持到了这儿,恭喜你,表示你有做AI大模型工程师的潜力。其实我想说的上面的内容只是冰山一角,刚开始大家不需要多么精通了解这些内容。主要是不断练习,让自己跳出「舒适区」,进入「学习区」,但是又不进入「恐慌区」,不断给自己「喂招」。记住,学习是一个持续的过程。大模型技术日新月异,每天都有新的研究成果和技术突破。要保持对知识的渴望,不断学习最新的技术和算法。同时,实践是检验学习成果的最佳方式。通过实际项目实践,你将能够将理论知识转化为实际能力,不断提升自己的技术实力。最后,不要忘记与同行交流和学习。
2024-07-05 16:22:36
1744
1
原创 当我面完国内20家公司大模型岗位面试,他们叫我卷王
淘天集团的大模型研究将主要围绕两个场景展开:一是搜广推,二是逛逛的内容化。团队组建工作由淘天集团CEO戴珊、淘天集团CTO若海、阿里妈妈CTO郑波等人共同牵头。介绍链接。淘天集团的大模型研究将主要围绕两个场景展开:一是搜广推,二是逛逛的内容化。团队组建工作由淘天集团CEO戴珊、淘天集团CTO若海、阿里妈妈CTO郑波等人共同牵头。介绍链接。
2024-06-29 16:37:19
3153
1
原创 35岁程序员收藏!大模型风口已至,月薪30K+AI岗正在批量诞生,免费学习资料领取_大龄程序员转行指南
文章指出中国互联网企业短命和新人涌现导致35岁程序员面临困境,建议提前规划职业转型。可转向数据分析师、网络安全专家、产品经理等领域,或进入管理岗位、跨行创业等。同时,文章强调大模型领域的兴起,提供学习路径图,分为初阶、高阶、模型训练和商业闭环四个阶段,帮助程序员抓住AI风口,实现职业升级。
2026-02-11 21:49:52
775
原创 为什么我还是无法理解Transformer?Transformer到底是什么?
究其原因,是但凡讲到 Transformer,铺天盖地的资料上来就直奔自注意力机制(Self-Attention)的 Q、K、V 细节,只钻枝叶、不谈全局,只见树林,不见森林。
2026-02-11 21:48:40
197
原创 AI 编程大突破:DeepSeek V4 即将发布,普通人也能成为“代码大师”!
DeepSeek 公司的 AI 编程助手 V4 即将发布,有望成为全球最强的 AI 程序员。通过三篇最新论文,V4 将具备“查字典”能力,解决模型训练崩溃问题,并公开核心技术。V4 旨在将 AI 编程能力提升到极致,能处理超大型代码项目,不易“忘事”,且可能便宜且开源。对于程序员和小团队来说,V4 的发布将是重大利好,有望降低成本,甚至实现本地部署,让 AI 编程走向普通人。
2026-02-11 21:47:27
133
原创 小白程序员必看!收藏这份大模型学习指南,解锁AI前沿技术与应用_2026大模型前沿技术原理及未来应用场景展望报告
本文阐述人工智能发展范式的转变,从符号智能到通用智能的跃迁,重点介绍大模型如何通过自监督预训练突破瓶颈,实现从“数据管理”到“知识管理”的跨越。文章还深入探讨了Agent技术体系构建专业智能体的能力,包括检索增强生成、工具学习、流程自动化和群体智能等四大支柱。通过金融、跨境电商、汽车营销、合规审查四大案例,展示了大模型与Agent在行业落地中的实践路径与商业价值,揭示了其将专家经验流程化、复杂任务自动化、人力成本边际化的核心价值。
2026-02-11 21:46:30
163
原创 AI大模型学习路线(2026最新)神仙级AGI大模型教程分享
第一阶段:基础知识准备 在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。
2026-02-10 18:23:15
810
原创 3个问题帮你找到心仪的AI工作(收藏+学习)|我两周拿offer的经验
本文分享作者AI求职经验,指出找工作的核心是匹配岗位,而非盲目刷经验。作者建议在写简历前先想清楚3个问题:要找什么类型的AI岗位(纯执行或决策型)、去什么类型的公司(纯AI、传统转型或大厂)、能力能匹配什么。通过梳理过往经历找核心竞争力,用“从结果倒推”的学习方法快速提升技能,制作作品集,并采用“三线并行”策略(海投、目标公司和资源线)找工作,最后通过面试复盘不断优化。方向比方法更重要,想清楚方向再行动。
2026-02-10 18:21:30
298
原创 小白程序员2025年转行大模型必看:实战落地不空谈,0基础能不能转大模型?到底怎么转?
摘要: 本文基于吴师兄多年AI大模型转行指导经验,指出大模型领域核心落地技能未变,并针对2025年转型需求提出实战建议。首先澄清大模型技术栈包含应用层、模型层等5个层级,将岗位分为数据、平台、应用、部署四类。重点剖析新人三大误区:盲目调参、碎片化学习、工程能力不足。推荐数据方向作为最佳入门选择,并给出分阶段学习路径:认知构建→实战落地→项目打磨。文末介绍了以企业级项目为核心的训练营模式,已帮助学员获得大厂offer。文末附赠AI大模型系统化学习资料包。
2026-02-10 18:19:49
258
原创 掌握智能体记忆:小白程序员轻松入门大模型核心技术(收藏版)
本文系统探讨了智能体记忆的核心概念与实现框架。文章首先区分了智能体记忆与相关概念(LLM记忆、RAG和上下文工程)的异同,指出智能体记忆具有跨任务持久性和环境驱动的动态特性。在实现层面,提出了词元级、参数记忆和潜在记忆三种形式,并从事实记忆、经验记忆和工作记忆三个维度剖析其功能角色。重点阐述了记忆形成、演化和检索的动态过程,揭示了智能体如何通过记忆系统实现持续适应和长时推理。该研究为构建具有自主进化能力的智能体提供了理论基础,对实现AGI具有重要意义。
2026-02-10 18:18:22
269
原创 小白程序员必看:杨立昆能量模型Kona 1.0发布,AI或将迎来逻辑优化新纪元!
图灵奖得主杨立昆发布全球首款商业化能量推理模型Kona 1.0,挑战主流大语言模型(LLM),引领AI从“概率生成”向“逻辑优化”演进。能量模型突破LLM在逻辑推理、因果关系建模等场景的局限,通过全局优化实现更严谨的推理。杨立昆同时主导世界模型公司,构建多模型协同的AGI生态。Kona 1.0聚焦能源、半导体等高风险领域,与LLM形成互补,推动AI技术范式迁移。尽管面临挑战,能量模型被视为通向通用人工智能(AGI)的关键路径。
2026-02-10 18:17:09
661
原创 2026年大模型金三银四求职全攻略:从小白到进阶,附赠全套学习路线+面试题库,如何成功锁定大模型相关岗位?
本文针对大模型领域的求职者,深入分析了行业趋势与热门岗位(如算法工程师、数据科学家等),并提供了从简历准备到面试技巧的全方位求职策略。此外,文章强调了持续学习的重要性,并整理了一份涵盖学习路线图、实战案例、视频教程及大厂面试题的AI大模型资料包,旨在帮助零基础小白和程序员提升技能,在激烈的竞争中脱颖而出。
2026-02-06 21:00:04
892
原创 CacheBlend技术详解:突破RAG性能瓶颈,实现KV Cache动态融合与推理加速
CacheBlend是一种创新的KV Cache动态融合技术,专为RAG场景设计。该技术通过"选择性重算与融合"机制,有效解决了非前缀文本块的复用难题。其核心在于检测关键Token并选择性重算,实现大部分KV Cache的高效复用。实验数据显示,CacheBlend能显著降低首字延迟2.2-3.3倍,提升系统吞吐量2.8-5倍。LMCache项目已实现该技术,为开发者提供了环境配置和代码示例,帮助优化RAG系统性能。这项技术突破了传统Prefix Caching的限制,在不影响生成质量的
2026-02-06 20:58:38
332
原创 大模型技术架构与选型:避免10倍成本差异的实用指南(值得收藏)
文章提出AI技术架构四层模型:技术范式层、核心技术层、能力表现层和应用架构层,强调技术选型决定产品边界,错误选择可能导致10倍以上成本差异。提供决策框架、场景分析方法和技术验证工具,帮助读者根据业务需求选择合适技术实现,确保技术选型与应用能力对齐,避免常见技术选型误区。
2026-02-06 20:57:38
751
原创 AIGC完全指南:从理论到实践的全方位学习,从大模型到应用落地的全链路实践与未来趋势
AIGC(人工智能生成内容)技术依托大模型实现了文本、图像、语音等多模态内容生成,正深刻改变内容创作方式。文章系统介绍了AIGC的技术原理、与大模型的关系,以及其在电商、办公、游戏等行业的应用场景。通过DeepSeek等工具的实操案例,展示了从基础对话到文档处理的应用路径。AIGC不仅提升了内容生产效率,还催生了AI训练师等新兴职业,推动传统行业转型升级。文章强调提示词技巧对优化生成结果的重要性,并提供了不同场景下的实用建议,为读者掌握AIGC技术提供了全面指导。
2026-02-06 20:53:01
252
原创 AI大模型金融应用实战:9大场景详解与代码实践指南
AI大模型深度赋能金融行业数字化转型 摘要:本文系统梳理了AI大模型在金融领域的创新应用,重点阐述了数智化客户服务平台和知识智能生成两大核心场景。通过构建"大模型+专业小模型"技术架构,结合RAG、多模态交互等前沿技术,实现了智能客服、知识库管理等业务的全面升级。实践表明,该方案显著提升服务效率50%以上,降低运营成本,同时拓展了普惠金融服务边界。文章详细展示了从技术实现到业务落地的完整路径,为金融行业智能化转型提供了可复制的实践范例。
2026-02-06 20:51:43
433
原创 大模型在医疗预问诊中的应用:分层多智能体框架详解
本文提出了一种创新的分层多智能体框架,将医疗AI从被动响应转变为主动引导结构化问诊的系统。该框架由八个专业智能体组成,通过控制器实现动态任务评估、自适应提问和分层管理。实验结果表明,该系统在分诊准确率(87.0%)、任务完成率(98.2%)和临床质量方面表现优异,具有模型无关性、隐私保护和克服长对话限制等优势。这一突破性技术有望显著提升医疗效率,为医生提供高质量的预问诊支持,展现了AI在医疗领域的巨大潜力。
2026-02-06 20:50:22
333
原创 值得收藏!2026年大模型高薪岗位全解析:从技能到薪资的终极指南,非常详细建议收藏
2025年AI大模型领域薪资高企,算法工程师月薪7万起,AI科学家月薪11万+。高薪源于人才供需失衡、政策支持和技术红利。五大高薪岗位包括算法工程师、AI科学家、架构师等。提升路径包括学历镀金、论文比赛、项目实战等技能积累。未来将向模型轻量化和应用爆发方向发展。文章提供从零基础到进阶的完整学习路线,助力程序员抓住AI红利,实现百万年薪目标。
2026-02-05 15:58:19
851
原创 大模型革命:产品经理工作方式彻底改变,2小时写完PRD,收藏这篇告别加班!
摘要: 文章探讨了大模型技术如何重塑产品经理的工作范式。传统PRD写作流程存在效率低下、文档冗余等问题,而随着开发团队转向AI辅助编程,PRD应从"写给开发看"转变为"写给AI看"。作者通过实践验证,采用Markdown格式将PRD与代码共同存储于Git仓库,结合Mermaid流程图等结构化表达,将PRD写作时间从几天压缩至2小时。新模式下产品经理需聚焦需求洞察、商业决策等核心价值,通过AI工具实现规范驱动开发(Spec-Driven Development),减少需
2026-02-05 15:57:07
692
原创 大模型全解析:从原理到千行百业应用,程序员必读
文章介绍了大模型的发展历程、技术能力及行业应用。大模型已实现通识教育、多模态对齐和工具使用三个阶段,最新模型如GLM-4.5具备全栈开发能力,可应用于政务、教育、科研、企业、文旅和城市等多个领域,成为提升各行业生产力的强大工具。未来大模型将向具身智能和自我认知方向发展。
2026-02-05 15:55:54
677
原创 RAG系统:大模型“健忘+幻觉“的完美解决方案,从原理到实战全解析
RAG系统通过外置知识库和检索工具增强大语言模型性能,有效降低幻觉率至5%以下并解决知识滞后问题。该系统由数据层(知识库)、检索层(检索器)和生成层(生成器)三大模块组成,采用离线预处理和在线问答两阶段工作流程。文章详细介绍了基于Python3.11、Qwen-Max、Chroma等开源工具搭建RAG系统的7步实操方法,包括环境准备、向量知识库构建等关键环节,为开发者提供可直接复用的技术方案。
2026-02-05 15:54:33
756
原创 大模型应用指南:为什么应用场景比技术更重要?(建议收藏)
技术的价值在于应用而非技术本身。大模型应用的核心思想已基本确定,技术栈有限但应用场景无限。开发者需不仅了解技术,更要结合行业特性,解决不同场景的具体问题。技术可被替代,但独特的应用场景才是真正的核心竞争力。
2026-02-05 15:53:23
636
原创 Java后端开发 or AI大模型应用开发?这么简单的问题还用做选择?
我身边的情况,从去年(其实更早)开始,我们公司调整了招聘策略,减少Java后端开发人员的招聘,还裁掉了不少外协同学,转而增加算法工程师(尤其是大模型方向)的引进。今年随着机器人热潮,又加大了硬件研发和控制算法岗位的招聘力度。
2026-02-04 21:43:40
1133
原创 互联网人必藏:大模型技术落地实战指南,从小白到高手的进阶之路_互联网行业AI大模型开发解决方案
互联网行业进入存量竞争时代,大模型技术成为创新驱动力。企业面临模型应用、数据安全与快速落地的挑战。数商云推出全栈式AI解决方案,提供场景化能力、私有化部署和敏捷集成,通过三层架构设计,帮助企业实现AI赋能业务增长,提升内容创作、用户运营等核心环节,成功案例验证了方案价值。
2026-02-04 21:42:08
598
原创 空间知识图谱赋能多模态合成:提升大模型空间理解能力的新范式
SKG2Data:空间知识图谱引导的多模态数据生成方法 本文提出SKG2Data方法,通过构建结构化空间知识图谱指导多模态数据生成,解决现有大模型在空间理解方面的短板。该方法首先利用大语言模型自动构建包含实体、属性和空间关系的知识图谱,再以此为基础生成符合空间逻辑的图像和文本数据。实验表明,该方法能显著提升模型的空间推理能力,同时保持通用性能稳定。研究还发现方向关系数据对模型提升效果优于距离关系数据,且复杂场景数据更有助于模型学习。这项工作为多模态模型的空间认知能力提升提供了新的数据生成范式。
2026-02-04 21:40:39
866
原创 AI大模型开发进阶之路:五阶段学习路线助你成为高薪开发者
文章介绍了AI大模型的发展历程及当前趋势,阐述了学习AI大模型应用开发的四大理由(时代风口、高薪就业、提升竞争力、必备技能)。为初学者设计了五阶段学习路线:炼气期(实践打基础)、筑基期(掌握提示工程)、金丹期(项目集成开发)、元婴期(深入核心工具链)、化神期(部署优化与前沿探索)。最后提供了精选免费学习资源,帮助开发者快速成长为AI应用开发高手。
2026-02-04 21:39:45
986
原创 大模型应用开发入门:从零理解RAG、Token与向量数据库
本文从开发者视角详解大模型应用开发核心概念:介绍LLM本质与Token计算方法,详解RAG架构如何解决知识过时、幻觉和私有数据安全问题,阐述向量数据库在检索中的作用,对比RAG与私有数据训练的优劣,强调提示词工程对应用效果的关键影响,为开发者提供大模型应用开发的实用指南。
2026-02-04 21:38:52
690
原创 想入坑AI?先搞懂这些岗位选择,避免走弯路_想转行AI赛道,哪些岗位值得做
文章分析了AI行业的岗位选择策略,指出数据标注员不适合高学历者,Prompt工程师仅是基础技能而非独立岗位。建议优先选择产品经理(连接用户需求与技术商业)和解决方案工程师(对接客户痛点)这两个核心岗位,而运营岗位因AI产品尚处早期阶段不推荐。强调AI行业机遇属于早期正确选择的人。文末提供了大模型学习资源获取方式。
2026-02-03 23:02:13
2032
2
原创 代码补全新突破:用简单grep实现比复杂RAG快35倍的高效检索
本文提出GrepRAG方法,通过让大模型自主生成精确grep命令实现高效代码补全。针对传统检索方法计算成本高的问题,该方法采用轻量级词法检索,无需预建索引,检索速度提升35倍。通过标识符加权重排序和结构感知去重,解决了关键词歧义和上下文冗余问题。实验表明,GrepRAG性能达到SOTA水平,在跨文件依赖场景下表现优异,为代码补全提供了一种简单高效的解决方案。
2026-02-03 23:01:23
796
原创 一文掌握LoRA变体:分类理论到代码实现,解锁大模型高效微调新方法
本文首次系统研究LoRA变体,提出基于秩、优化动力学、初始化策略和MoE集成的分类体系,建立统一理论框架,并开源实现50多种变体的LoRAFactory代码库。通过大规模实验发现:1)LoRA对学习率高度敏感;2)适当配置下,原始LoRA性能可与多数变体持平甚至更优。该研究为LoRA的理论发展和应用实践提供了系统性基础。
2026-02-03 23:00:09
798
原创 从金鱼记忆到博学大脑:构建AI Agent的专业检索系统全攻略
摘要: 本文探讨了AI Agent的"金鱼记忆"问题及解决方案,提出构建短期工作记忆和长期语义记忆两种核心能力。详细分析两种实现方式(文件缓存与数据库索引),并介绍三级检索架构(基础检索、分块阅读、逐步推理)以提升搜索精准度。针对海量数据场景,推荐使用Elasticsearch实现毫秒级检索,结合BM25算法优化相关性打分。最后提供选型逻辑,帮助开发者根据数据规模和复杂度构建高效Agent系统。
2026-02-03 22:59:15
1021
原创 大模型工程师转型指南:别被学历吓退,薪资翻倍不是梦!非常详细收藏我这一篇就够了
大模型应用工程师转型门槛较低,核心在于掌握四大实用技能:提示工程、RAG检索增强生成、模型微调和工程部署能力。文章通过Java工程师等转型案例证明,传统程序员只需将现有工程能力迁移至AI领域即可成功转行。当前行业工具成熟、需求旺盛,是转型最佳时机,建议通过系统学习和项目实践快速掌握相关技能。
2026-02-02 23:59:00
1225
原创 DeepSeek-R1一周年,DeepSeek-R2要来了?
摘要:DeepSeek即将推出MODEL1模型,采用SSM与Transformer混合架构,显著提升长文本处理能力。相比前代V2,MODEL1在多模态能力上有重大升级,并实现三大技术突破:KV缓存优化降低15%内存占用和20%延迟,FP8解码提升30%推理速度,架构调整提高计算效率。这些改进将带来更快的响应速度、更低成本和更流畅体验,有望推动AI应用创新。作为R1的迭代,MODEL1可能延续开源策略,进一步降低AI开发门槛。
2026-02-02 23:57:26
739
原创 大模型微调终极指南:SFT会遗忘,RFT会记住,不看后悔系列
本文研究发现,大模型持续训练中存在灾难性遗忘问题:监督微调(SFT)会系统性损害旧任务表现和通用能力,而基于奖励的微调(RFT)则几乎无遗忘且能增强通用性。实验表明,RFT通过"隐式正则化"机制自动调节梯度更新方向,本能避开破坏旧知识的更新。作者还提出RIF-RFT方法过滤无效样本提升效率。研究表明,在持续学习场景下,RFT比SFT更具优势,未来可结合两者特点:SFT注入新知识,RFT保护基础能力。
2026-02-02 23:56:11
734
原创 小白也能懂的大模型入门指南:从概念到应用全面解析
大模型是基于超大规模参数的神经网络,通过预训练和微调获得涌现和泛化能力,涵盖语言、音频、视觉和多模态等类型。当前行业趋势从研发转向应用,推动大模型轻量化和终端部署。尽管大模型提升了效率,但也面临失业、版权、偏见、犯罪和能耗等挑战。训练过程分为预训练(学习通用特征)和微调(适应特定任务),需消耗大量算力和数据资源。大模型的应用场景广泛,包括内容生成、语音识别、图像处理等,但需权衡其性能与资源消耗。
2026-02-02 23:55:05
932
原创 大语言模型(LLM)核心技术解析:从底层原理到对话机制,一篇全掌握,值得收藏!
本文系统介绍了大语言模型(LLM)的工作原理及构建方法。首先定义了大语言模型是通过海量参数学习语言规律的人工智能系统。其对话过程包含分词、向量化、Transformer架构的自注意力机制等关键步骤,使模型能理解并生成自然语言。构建大模型需经历预训练(通用语言学习)、微调(解决具体任务)和增强优化(提升性能)三个阶段。文章指出当前大模型具备组合型创新能力,但可能缺乏真正的创造力。通过分词、向量相似度计算等底层技术解析,帮助读者理解大模型如何实现人机对话。
2026-02-02 23:54:02
479
原创 大模型学习全攻略:程序员如何抓住AI风口实现职业跃迁_作为前端程序员该如何转行大模型?说说我的经验
摘要:文章探讨程序员在经济下行时如何通过转行大模型领域实现职业突破。作者分享从前端转大模型的成功经验,强调选择风口行业的重要性,并详细分析前端转大模型的优势,如提升交互体验、个性化内容等。文章提供系统学习路径,包括数学基础、机器学习理论等核心知识,并推荐学习资源,帮助程序员顺利转型这一高薪新兴领域。
2026-01-31 17:28:06
1217
原创 LangGraph长短期记忆管理:打造类人记忆的AI智能体实践指南
本文系统介绍了LangGraph框架下的Agent记忆管理机制,重点解析了短期记忆(通过Checkpointer实现)和长期记忆(通过BaseStore实现)的概念与实现方法。短期记忆保障单次对话的连贯性,长期记忆支持跨会话知识共享。文章详细阐述了记忆存储、更新和检索的工作流程,并提供了基于InMemorySaver的短期记忆实现示例,展示了不同对话线程间的记忆隔离效果。通过合理设计记忆系统,开发者可构建具备类人记忆能力的智能体,显著提升交互体验和服务个性化水平。
2026-01-31 17:27:04
621
原创 大模型架构选型指南:RAG与智能体的区别与应用,一篇收藏足够!
本文详细解析了RAG与智能体的技术原理、架构差异和应用场景。RAG作为知识增强器通过外部检索提高大模型回答准确性;智能体则让AI从"思考者"变为"行动者",具备规划、工具调用和反思能力。文章提供了清晰的选型指南:需要精准答案时选RAG,处理多步骤开放任务时选智能体,两者可融合形成"Agentic RAG"架构,帮助开发者根据实际需求做出最合适的架构选择。
2026-01-31 17:25:46
621
空空如也
pandas数据的合并与拼接的实现
2021-12-08
pandas数据的合并与拼接的实现
2021-12-08
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅