- 博客(2411)
- 问答 (2)
- 收藏
- 关注
原创 暑假两个月学习AI产品经理详细路线,看这一篇就够了
以下是一个暑假期间学习AI产品经理的详细路线,分为八个周来进行:第1周:了解AI产品管理基础阅读材料:《人工智能:一种现代的方法》了解AI基础。《人人都是产品经理》了解产品管理基础。在线课程:Coursera上的“人工智能基础”课程。edX上的“产品管理基础”课程。实践:调研市场上现有的AI产品,分析其功能、用户群体和市场定位。第2周:深入学习AI技术在线课程:Udacity的“深度学习纳米学位”基础课程。
2024-07-19 09:57:24
2408
2
原创 AI大模型从零到专家:全面教程,一课掌握!
坚持到了这儿,恭喜你,表示你有做AI大模型工程师的潜力。其实我想说的上面的内容只是冰山一角,刚开始大家不需要多么精通了解这些内容。主要是不断练习,让自己跳出「舒适区」,进入「学习区」,但是又不进入「恐慌区」,不断给自己「喂招」。记住,学习是一个持续的过程。大模型技术日新月异,每天都有新的研究成果和技术突破。要保持对知识的渴望,不断学习最新的技术和算法。同时,实践是检验学习成果的最佳方式。通过实际项目实践,你将能够将理论知识转化为实际能力,不断提升自己的技术实力。最后,不要忘记与同行交流和学习。
2024-07-05 16:22:36
1742
1
原创 当我面完国内20家公司大模型岗位面试,他们叫我卷王
淘天集团的大模型研究将主要围绕两个场景展开:一是搜广推,二是逛逛的内容化。团队组建工作由淘天集团CEO戴珊、淘天集团CTO若海、阿里妈妈CTO郑波等人共同牵头。介绍链接。淘天集团的大模型研究将主要围绕两个场景展开:一是搜广推,二是逛逛的内容化。团队组建工作由淘天集团CEO戴珊、淘天集团CTO若海、阿里妈妈CTO郑波等人共同牵头。介绍链接。
2024-06-29 16:37:19
3144
1
原创 想入坑AI?先搞懂这些岗位选择,避免走弯路_想转行AI赛道,哪些岗位值得做
文章分析了AI行业的岗位选择策略,指出数据标注员不适合高学历者,Prompt工程师仅是基础技能而非独立岗位。建议优先选择产品经理(连接用户需求与技术商业)和解决方案工程师(对接客户痛点)这两个核心岗位,而运营岗位因AI产品尚处早期阶段不推荐。强调AI行业机遇属于早期正确选择的人。文末提供了大模型学习资源获取方式。
2026-02-03 23:02:13
1031
原创 代码补全新突破:用简单grep实现比复杂RAG快35倍的高效检索
本文提出GrepRAG方法,通过让大模型自主生成精确grep命令实现高效代码补全。针对传统检索方法计算成本高的问题,该方法采用轻量级词法检索,无需预建索引,检索速度提升35倍。通过标识符加权重排序和结构感知去重,解决了关键词歧义和上下文冗余问题。实验表明,GrepRAG性能达到SOTA水平,在跨文件依赖场景下表现优异,为代码补全提供了一种简单高效的解决方案。
2026-02-03 23:01:23
519
原创 一文掌握LoRA变体:分类理论到代码实现,解锁大模型高效微调新方法
本文首次系统研究LoRA变体,提出基于秩、优化动力学、初始化策略和MoE集成的分类体系,建立统一理论框架,并开源实现50多种变体的LoRAFactory代码库。通过大规模实验发现:1)LoRA对学习率高度敏感;2)适当配置下,原始LoRA性能可与多数变体持平甚至更优。该研究为LoRA的理论发展和应用实践提供了系统性基础。
2026-02-03 23:00:09
472
原创 从金鱼记忆到博学大脑:构建AI Agent的专业检索系统全攻略
摘要: 本文探讨了AI Agent的"金鱼记忆"问题及解决方案,提出构建短期工作记忆和长期语义记忆两种核心能力。详细分析两种实现方式(文件缓存与数据库索引),并介绍三级检索架构(基础检索、分块阅读、逐步推理)以提升搜索精准度。针对海量数据场景,推荐使用Elasticsearch实现毫秒级检索,结合BM25算法优化相关性打分。最后提供选型逻辑,帮助开发者根据数据规模和复杂度构建高效Agent系统。
2026-02-03 22:59:15
681
原创 大模型工程师转型指南:别被学历吓退,薪资翻倍不是梦!非常详细收藏我这一篇就够了
大模型应用工程师转型门槛较低,核心在于掌握四大实用技能:提示工程、RAG检索增强生成、模型微调和工程部署能力。文章通过Java工程师等转型案例证明,传统程序员只需将现有工程能力迁移至AI领域即可成功转行。当前行业工具成熟、需求旺盛,是转型最佳时机,建议通过系统学习和项目实践快速掌握相关技能。
2026-02-02 23:59:00
1048
原创 DeepSeek-R1一周年,DeepSeek-R2要来了?
摘要:DeepSeek即将推出MODEL1模型,采用SSM与Transformer混合架构,显著提升长文本处理能力。相比前代V2,MODEL1在多模态能力上有重大升级,并实现三大技术突破:KV缓存优化降低15%内存占用和20%延迟,FP8解码提升30%推理速度,架构调整提高计算效率。这些改进将带来更快的响应速度、更低成本和更流畅体验,有望推动AI应用创新。作为R1的迭代,MODEL1可能延续开源策略,进一步降低AI开发门槛。
2026-02-02 23:57:26
562
原创 大模型微调终极指南:SFT会遗忘,RFT会记住,不看后悔系列
本文研究发现,大模型持续训练中存在灾难性遗忘问题:监督微调(SFT)会系统性损害旧任务表现和通用能力,而基于奖励的微调(RFT)则几乎无遗忘且能增强通用性。实验表明,RFT通过"隐式正则化"机制自动调节梯度更新方向,本能避开破坏旧知识的更新。作者还提出RIF-RFT方法过滤无效样本提升效率。研究表明,在持续学习场景下,RFT比SFT更具优势,未来可结合两者特点:SFT注入新知识,RFT保护基础能力。
2026-02-02 23:56:11
664
原创 小白也能懂的大模型入门指南:从概念到应用全面解析
大模型是基于超大规模参数的神经网络,通过预训练和微调获得涌现和泛化能力,涵盖语言、音频、视觉和多模态等类型。当前行业趋势从研发转向应用,推动大模型轻量化和终端部署。尽管大模型提升了效率,但也面临失业、版权、偏见、犯罪和能耗等挑战。训练过程分为预训练(学习通用特征)和微调(适应特定任务),需消耗大量算力和数据资源。大模型的应用场景广泛,包括内容生成、语音识别、图像处理等,但需权衡其性能与资源消耗。
2026-02-02 23:55:05
739
原创 大语言模型(LLM)核心技术解析:从底层原理到对话机制,一篇全掌握,值得收藏!
本文系统介绍了大语言模型(LLM)的工作原理及构建方法。首先定义了大语言模型是通过海量参数学习语言规律的人工智能系统。其对话过程包含分词、向量化、Transformer架构的自注意力机制等关键步骤,使模型能理解并生成自然语言。构建大模型需经历预训练(通用语言学习)、微调(解决具体任务)和增强优化(提升性能)三个阶段。文章指出当前大模型具备组合型创新能力,但可能缺乏真正的创造力。通过分词、向量相似度计算等底层技术解析,帮助读者理解大模型如何实现人机对话。
2026-02-02 23:54:02
396
原创 大模型学习全攻略:程序员如何抓住AI风口实现职业跃迁_作为前端程序员该如何转行大模型?说说我的经验
摘要:文章探讨程序员在经济下行时如何通过转行大模型领域实现职业突破。作者分享从前端转大模型的成功经验,强调选择风口行业的重要性,并详细分析前端转大模型的优势,如提升交互体验、个性化内容等。文章提供系统学习路径,包括数学基础、机器学习理论等核心知识,并推荐学习资源,帮助程序员顺利转型这一高薪新兴领域。
2026-01-31 17:28:06
1210
原创 LangGraph长短期记忆管理:打造类人记忆的AI智能体实践指南
本文系统介绍了LangGraph框架下的Agent记忆管理机制,重点解析了短期记忆(通过Checkpointer实现)和长期记忆(通过BaseStore实现)的概念与实现方法。短期记忆保障单次对话的连贯性,长期记忆支持跨会话知识共享。文章详细阐述了记忆存储、更新和检索的工作流程,并提供了基于InMemorySaver的短期记忆实现示例,展示了不同对话线程间的记忆隔离效果。通过合理设计记忆系统,开发者可构建具备类人记忆能力的智能体,显著提升交互体验和服务个性化水平。
2026-01-31 17:27:04
615
原创 大模型架构选型指南:RAG与智能体的区别与应用,一篇收藏足够!
本文详细解析了RAG与智能体的技术原理、架构差异和应用场景。RAG作为知识增强器通过外部检索提高大模型回答准确性;智能体则让AI从"思考者"变为"行动者",具备规划、工具调用和反思能力。文章提供了清晰的选型指南:需要精准答案时选RAG,处理多步骤开放任务时选智能体,两者可融合形成"Agentic RAG"架构,帮助开发者根据实际需求做出最合适的架构选择。
2026-01-31 17:25:46
608
原创 大模型推理优化必读:一文吃透 FlashAttention、vLLM 与 GQA 四大核心技术(建议收藏)
摘要: 大模型推理中的显存溢出(OOM)主要由动态增长的KV Cache引起。本文解析四种优化技术:1)FlashAttention通过分块计算减少内存访问,加速注意力运算;2)PagedAttention(如vLLM)实现KV Cache的动态分页管理,提升显存利用率;3)MQA/GQA架构通过多头共享KV Cache,源头降低显存占用;4)量化技术压缩KV Cache存储。组合应用这些技术可显著提升推理速度与并发能力,适用于不同场景如高并发服务、长上下文任务等。
2026-01-31 17:24:41
626
原创 2025年最值得入行的高薪岗位:AI产品经理转型指南与薪资翻倍秘籍
AI产品经理成高薪风口,薪资涨幅达40%,但转型面临知识体系缺失、落地经验不足等挑战。成功需分阶段构建产品认知、业务理解和技术能力,并积累AI项目经验。技术背景与产品思维是核心竞争力,系统化学习可提高转型成功率。大模型AI岗位需求激增,初级工程师平均薪资28K,企业急需能调优模型的人才。学习路径包括提示词工程、RAG系统开发、智能体构建等,分4阶段从初阶应用到商业闭环,90天可实现从入门到实战。
2026-01-31 17:23:41
855
原创 2026程序员转行AI大模型全攻略:后端开发轻松转型大模型应用开发,零基础突围路线图!非常详细建议收藏!
大模型时代程序员转型指南 2025年全球大模型产业规模突破5000亿美元,核心岗位缺口超百万。大模型算法岗年薪达200万,全栈工程师月薪3.2万,远超传统开发岗。金融、医疗等领域80%企业计划部署私有化LLM系统。国家政策支持与技术民主化(如Hugging Face模型库、LangChain框架)降低了转型门槛。四大黄金岗位推荐:AI全栈工程师(转行友好度高)、算法工程师(需精通Transformer架构)、应用开发工程师(基于LangChain构建智能体)、AI产品经理(技术转管理首选)。抓住AI浪潮,将
2026-01-30 22:57:54
956
原创 大模型+政府服务:六大应用场景实战解析,AI政务开发必看
文章详解了大模型技术在政府服务领域的六大应用场景:政策智能推送、行政审批引导、企业需求识别、产业链招商分析、人才靶向招引及合规风险内审。这些应用解决了传统政府服务的痛点,提升服务效率与精准度,为"AI+政府"提供可复制的实战范本,助力政府治理智能化转型,是程序员学习大模型落地的优质参考。
2026-01-30 22:55:10
893
原创 大模型行业应用全景图:从零开始的AI落地实践
大模型行业应用地图:从低投入场景切入,逐步拓展高价值领域 本文构建了一个"业务价值×投入成本"评估框架,建议企业从低价值、低投入的AI应用场景入手,如营销内容生成、模板化文件处理等。针对四类企业(To C、生产型、专业To B、机构型)分别分析了适合的AI切入点,强调通过真实用户反馈打磨产品,避免盲目投入高成本项目。文章指出,先做"有人用的小应用"积累经验,再逐步向高价值复杂场景推进,是更稳妥的AI落地路径。
2026-01-30 22:54:05
897
原创 Multi-Agent系统:大模型应用开发的深水区完全指南
多智能体系统(Multi-Agent)正成为AI应用开发的新方向,通过分工协作突破单体大模型的局限。文章系统分析了"大脑-记忆-感知-行动"的通用架构,对比了LangGraph、AgentScope、Spring AI Alibaba等主流框架的特性与适用场景,并给出选型建议。未来多智能体系统将从简单对话向具备环境交互、资源调度和自我进化能力的智能集群演进,为复杂任务提供更强大的解决方案。
2026-01-30 22:53:04
527
原创 程序员必看:大模型在12大领域的60个应用案例,建议收藏学习
本文系统介绍了人工智能在城市治理、医疗、金融、教育等12大领域的60个应用案例,展示了AI技术如何赋能各行各业。从民生诉求处理、智能诊断到反欺诈监测、个性化学习,AI正深刻改变传统工作方式,提升效率,优化服务。这些案例不仅呈现了AI技术的实际价值,也为技术人员提供了丰富的应用思路和开发方向,对推动AI产业化具有重要参考意义。
2026-01-30 22:51:41
884
原创 2026最新《AI大模型应用开发学习资源包》最全学习路线、从入门到精通视频教程、实战案例与资源汇总(非常详细建议收藏)
当下,⼈⼯智能市场迎来了爆发期,并逐渐进⼊以⼈⼯通⽤智能(AGI)为主导的新时代。企业纷纷官宣“ AI+ ”战略,为新兴技术⼈才创造丰富的就业机会,⼈才缺⼝将达 400 万!伴随着人才需求增大,AI 大模型新发岗位平均月薪也由 2023 年的 ¥45812 上升至 ¥46452,远超新经济行业平均水平。
2026-01-29 21:34:31
1137
原创 TimeXL:大模型赋能的可解释多模态时间序列预测新方法
TimeXL提出结合LLM的可解释多模态时间序列预测框架,通过多模态原型编码器生成预测与解释,并利用LLM三重协作机制形成闭环优化。该方法解决传统模型"解释性缺失"与"上下文利用不充分"痛点,在多领域均优于现有方法,支持不同LLM且效率较高。
2026-01-29 21:32:42
955
原创 Deep Agents框架详解:让AI代理具备任务规划与分解能力,小白也能上手(必收藏)
Deep Agents是一个由LangGraph支持的框架,专为构建能处理复杂多步骤任务的AI代理而设计。它提供四大核心能力:规划和任务分解、上下文管理、子代理生成和长期记忆能力,使AI能像人类一样分解任务、管理大量上下文,并派生子代理处理特定部分。该框架建立在LangGraph之上,与LangChain生态系统紧密集成,适用于需要处理复杂多步骤任务的应用场景。
2026-01-29 21:31:41
552
原创 序员必看!大模型高薪岗位揭秘:收藏这篇文章,年薪百万不是梦
锐仕方达发布132个高薪岗位,多个大模型相关职位年薪达40-220万,遍布北京、上海、杭州等城市。岗位包括大模型研发经理、算法工程师、技术专家等,覆盖互联网、人工智能、航空航天等行业。数据显示大模型领域人才需求旺盛,薪资明显高于其他技术岗位,凸显AI人才的高价值与市场稀缺性。
2026-01-29 21:29:53
458
原创 Qwen2.5大模型技术详解:架构设计、微调策略与知识增强指南,建议收藏
本文详解Qwen2.5大模型架构特点,包括分组查询注意力、SwiGLU激活函数等组件。重点介绍LoRA/QLoRA微调策略和知识增强三层方法(提示词工程->RAG->微调)。微调修改模型权重传授技能,RAG提供实时知识,为开发者提供大模型应用优化技术路线。
2026-01-29 21:28:22
839
原创 Agent Skills入门指南:从“不就是Markdown“到大模型稳定执行的关键
Agent Skills是Anthropic推出的大模型技能包,通过包含流程规范、脚本资源和参考文档,解决任务执行的稳定性、复用性和分发问题。采用三层渐进式加载机制(元数据→指令→资源)避免上下文爆炸,适合重复性、可分解的任务场景。作为人机协作中间层,它让非技术人员能用自然语言定义复杂软件行为,比传统提示词更结构化。Skills包含核心文档、脚本、参考资料和静态资源,已在Trae等平台实现应用,适用于需求解析、低代码开发等标准化流程场景。
2026-01-29 21:27:06
546
原创 AI大模型时代,谁在收割技术红利?大模型工程师薪资揭秘与学习指南
AI大模型时代催生高薪职业热潮,大模型应用开发工程师成为职场"顶流",平均月薪超6.8万元,年薪百万岗位频现。政策与资本双重驱动下,行业人才供需比达1:10,技术壁垒使复合型人才稀缺。文章剖析职业优势、入门门槛及核心技能,提供从Python基础到Transformer架构的完整学习路线,包含104G免费学习资源包,涵盖视频教程、技术文档和实战项目。资料由清华大学博士团队整理,适合应届生、转行者和传统开发者系统学习,抓住AI时代技术红利,实现职业跃迁。
2026-01-27 01:00:03
929
原创 大模型学习宝典:收藏这份系统性技术框架,从零开始构建LLM
本文基于Stanford CS336课程笔记整理,系统总结了构建大语言模型的核心知识框架。主要内容包括:BPE分词器原理、FLOPs计算与显存估算方法、网络结构设计(归一化/位置编码/激活函数选择)、超参数调优策略、训练稳定性技巧(梯度监控/溢出处理)、MoE专家混合系统实现、GPU硬件优化(混合精度/算子融合)、分布式并行策略(ZeRO/TP/PP组合)、推理加速技术(KV Cache/量化)、Scaling Law应用规律,以及数据处理和评估方法。文章特别强调工程实践中的关键细节,如前向/反向计算复杂度
2026-01-27 00:58:31
440
原创 【保姆级教程】移动端部署本地知识库与大模型,小白也能轻松上手(建议收藏)
本文系统介绍了移动端部署本地知识库与大模型的技术方案,重点解决资源受限环境下离线AI功能实现问题。方案采用轻量级模型(Phi-2/TinyLlama等)配合高效推理引擎(llama.cpp/MLC LLM),提供两种知识库构建方式:向量数据库语义检索和关键词匹配。详细阐述了Android部署流程,包括模型准备、推理引擎集成和RAG实现,并给出量化、内存管理等优化策略。针对不同设备性能,分别提供了标准方案(7B模型+FAISS)和简化方案(1B模型+SQLite)。完整技术栈覆盖从模型选择到性能调优的全流程,
2026-01-27 00:57:19
584
原创 深度学习梯度全攻略:从入门到精通的14篇完结系列
本文总结了深度学习梯度系列的14篇文章,系统阐述了梯度在深度学习中的核心作用。梯度从损失函数定义开始,通过反向传播计算,在网络结构中被处理,并受优化器、学习率和梯度裁剪的影响。文章强调深度学习的本质并非简单函数拟合,而是构建一条稳定可控的梯度流动通路。此外,文章还介绍了AI大模型学习资源包,包含视频教程、学习路线、电子书籍和面试题目等,旨在帮助学习者系统掌握大模型技术。
2026-01-27 00:56:29
450
原创 MCP与A2A深度解析:AI系统集成与智能体协作的未来之路
MCP与A2A是AI系统集成的两大核心协议。MCP规范AI与工具/数据的安全交互,提供资源、工具和提示模板三大能力;A2A则定义智能体间的协作标准,通过任务、消息和产物等组件实现高效接力。它们将AI开发从功能实现转向接口定义,提升系统的可插拔性、可观测性和治理能力,推动AI应用向模块化发展。MCP解决工具调用零散、数据割裂问题,A2A应对多智能体协作挑战,二者共同构成AI系统的"操作系统层"规范,实现安全高效的AI集成与应用。
2026-01-27 00:55:35
526
原创 大模型面试真题解析+学习路线图,附200本PDF书籍和100套商业方案_AGI大模型面经汇总,太全了!
摘要: 本文汇总了字节、饿了么、网易等大厂的大模型算法面试真题,涵盖Transformer原理、LLaMA结构、位置编码等技术问题及算法题解答。同时提供系统化的大模型学习路径,包括七大阶段(如提示词工程、模型微调等)及配套资源(视频教程、电子书籍、面试题库等)。资料由业内专家整理,适合从入门到进阶的学习需求,助力转行或提升AI大模型技术能力。
2026-01-25 20:34:16
393
原创 大模型学习全攻略:零基础入门到进阶,附实战项目教程
本文系统介绍大模型学习路径,从Transformer架构等底层原理到微调技术(7阶段8方法),推荐新手掌握Prompt Tuning+LoRA。包含新闻分类微调实战案例,提供完整代码和部署流程。最后分享104G大模型学习资源包,含视频教程、电子书、面试题等,适合不同基础的学习者。强调先理解原理再实践,从轻量微调入手,通过项目实战巩固知识。
2026-01-25 20:33:21
404
原创 彻底告别云端依赖!LM Studio让你的电脑变身强大AI工作站【附详细教程】
LM Studio工具让用户轻松在本地电脑部署大模型,摆脱云端依赖。文章详解安装步骤(下载、设置中文界面)、模型搜索下载(支持修改存储路径)及运行方法,突出本地化优势:数据安全、无流量限制、离线可用。即使非技术用户也能快速上手,体验专属AI助手。文末附赠AI大模型学习资源包(含视频教程、电子书、面试题等),由专家团队整理,适合各阶段学习者提升技能。
2026-01-25 20:30:46
663
原创 传统ChatBot四大瓶颈与AgenticRAG完整认知闭环:工业级开发实践
传统ChatBot因架构认知局限难以实现生产级可靠性,而AgenticRAG通过理解+推理+验证的完整认知闭环突破了这一瓶颈。深蓝学院推出由商汤科技专家主讲的工业级RAG系统与Agent应用开发课程,帮助学员从Prompt工程进阶为AI应用架构师。课程包含104G大模型学习资源包,涵盖视频教程、电子书籍、技术文档和面试指导,由资深专家团队整理,适用于应届生、转行者和开发者提升AI实战能力。
2026-01-25 20:29:57
482
原创 LangChain v1.0 Agent中间件开发实战:SummarizationMiddleware详解
摘要: LangChain v1.0的SummarizationMiddleware是一种Agent中间件,用于自动压缩对话历史上下文,减少token消耗并提升系统性能。当历史消息超过预设阈值时,该中间件会智能保留最近的几条消息并生成摘要,优化大模型对话系统的效率。文章详细介绍了其工作原理、配置方法及代码实现,帮助开发者快速集成这一功能。通过智能摘要技术,SummarizationMiddleware有效解决了长对话场景下的token管理问题,适用于客服系统、研究助手等应用场景。
2026-01-25 20:28:48
549
原创 程序员收藏!AI产品经理转型与大模型学习全攻略,抢占AI时代先机,传统PM如何快速转型成AI产品经理?
文章详细介绍了人工智能时代产品经理的转型路径,包括AI基础知识学习、思维模式转变、算法边界熟悉和工作流程规划,强调抢走饭碗的不是AI本身,而是会利用AI的人。文章还提供了系统学习大模型(LLM)的资源包,帮助程序员建立AI认知体系,避免被时代淘汰,成为推动AI发展的技术人才。
2026-01-24 21:24:59
452
原创 用通俗的方式介绍大语言模型训练过程,非常详细收藏我这一篇就够了
站在大语言模型外部看需要准备些什么样的训练数据,分什么阶段,怎样去训练大语言模型,把大语言模型看成一个黑盒。LLM都是如何训练出来的呢?**GPT的训练**分为以下3个阶段:1、预训练Pretrain2、监督微调SFT (Supervised Fine-Tuning)3、基于反馈的强化学习RLHF(包含了Reward Model、PPO (Proximal Policy Optimization)
2026-01-24 21:23:55
469
空空如也
pandas数据的合并与拼接的实现
2021-12-08
pandas数据的合并与拼接的实现
2021-12-08
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅