1.基于改进粒子群算法的智能小区电动汽车用电优化策略
本文以优化负荷曲线性能、降低电动汽车充电费用为目标,改进粒子群算法并提出电动汽车用电优化策略,结合智能小区可调整负荷、温控负荷进行仿真验证。
2.基于深度强化学习的电动汽车充电调度算法研究进展
对电动汽车的充电过程进行优化调度有利于电网安全稳定运行,提升道路通行效率,提高可再生能源利用率,减少用户充电时间和充电费用.深度强化学习可以有效解决电动汽车充电优化调度面临的随机性和不确定性因素的影响.首先,概述了深度强化学习的工作原理,对比分析了不同种类强化学习的特点和应用场合.然后,从静态充电调度和动态充电调度两方面综述了基于深度强化学习的电动汽车充电调度算法研究成果,分析了现有研究的不足.最后,展望了该领域未来的研究方向.
未来研究方向
1)考虑新能源接入电网情况下针对充电桩级和充电站级的静态充电调度问题。目前的研究大都
围绕分时电价进行调度,以实现电网负荷的“削峰填谷”,并降低运营商或用户的用电成本。但是在新能源接入电网情况下考虑新能源利用率的研究还较少。如何解决出力的不确定性是新能源接入电网的关键问题,传统基于模型的方法难以建立精确的系统模型,而强化学习在解决随机不确定因素时具有一定的优势。然而,强化学习方法也具有一定的局限性,例如在考虑新能源利用率时很大程度上依赖于人为设计奖励函数,如何优化奖励函数,能够使算法收敛的同时并获得预期效果尤为关键。目前深度学习方法(如循环神经网络)已在新能源出力预测领域取得一定成果,如何提高实时预测精度并与强化学习相结合,从而更好地参与配电网的负荷调度,并满足用户需求是潜在的研究热点。
2)
深度融合“车-路-网”信息的电动汽车综合充电路径规划。随着电动汽车的不断普及,未来对深度融合“车-路-网”的多源、异构信息,在高度随机的环境下实现集群电动汽车充电路径的优化调度以降低用户的充电费用,提高路网和电网的运行效率及安全性的研究具有重要意义。多智能体的优势就是合作、博弈,相较于单车调度具有很强的鲁棒性和可靠性,并具有较高的问题求解效率。但目前多智能体强化学习算法在电动汽车充电调度中的研究还很少,随着MADDPG、Q-MIX等多智能体深度强化学习算法应用的不断成熟,如何将其应用于解决大规模电动汽车充电调度是未来的重要研究方向之一
3)
基于图强化学习的电动汽车充电引导算法。电网与交通网数据均呈现出典型的图结构,其拓扑中蕴含大量信息,图神经网络在处理海量图结构数据和复杂关联性问题时具有很大优势,能对不规则环境信息进行特征提取,学习图内包含的知识,对图中各节点间的相关性具有强大的建模能力。电动汽车和充电站之间关系密切,电动汽车快速充电站的引导问题本质就是一个推荐问题,正是图神经网络的强项之一。未来可将图神经网络与强化学习深度结合,图神经网络用于提取交通网特征,强化学习进行充电调度决策,从而设计出一套高效的快速充电引导和控制策略,是提高用户满意度、确保耦合系统稳定运行的重要前提。基于此,未来图深度强化学习算法在电动汽车充电调度领域中的应用值得研究人员进一步深入研究。
3.基于负荷平衡的电动汽车模糊多目标充电调度算法
实验结果表明,在不同约束组合下,该充电策略能够有效做到平抑负荷波动和实现三相平衡,并尽可能实现公平充电。