摘要
在上周的学习基础之上,本周学习的内容有LSTM的代码实现,通过对代码的学习进一步加深了对LSTM的理解。为了切入到transformer的学习,本文通过对一些应用例子的分析,阐述了什么是序列到序列(Seq2Seq)模型。序列到序列模型用于将一个序列(如文本,时间序列数据)转换为另一个序列。这种模型广泛应用于自然语言处理领域,特别是在机器翻译、文本摘要、对话系统和语音识别等任务中。序列到序列模型通常由Encoder和Decoder两部分组成。除此本周还回顾了梯度与方向导数的相关问题与数学推导。
Abstract
On the basis of last week’s learning,this week’s learning content includes the code implementation of LSTM, which further deepens the understanding of LSTM through the study of the code. In order to delve into the learning of transformers, this article explains what sequence to sequence (Seq2Seq) model is through the analysis of some application examples.The sequence to sequence model is used to transform a sequence (such as text, time series data) into another sequence. This model is widely used in the field of natural language processing, especially in tasks such as machine translation, text summarization, dialogue systems, and speech recognition. The sequence to sequence model usually consists of two parts: Encoder and Decoder. In addition, this week we also reviewed the related issues and mathematical derivations of gradients and directional derivatives.
1. LSTM的代码实现
在上周对LSTM的学习基础之上,本周通过对LSTM代码的学习进一步加深对LSTM的理解
(1)激活函数的实现
在LSTM中用到的激活函数为sigmoid()和tanh(),代码实现过程如下;
class SigmoidActivator(object):
def forward(self, weighted_input):
return 1.0 / (1.0 + np.exp(-weighted_input))
def backward(self, output):
return output * (1 - output)
class TanhActivator(object):
def forward(self, weighted_input):
return 2.0 / (1.0 + np.exp(-2 * weighted_input)) - 1.0
def backward(self, output):
return 1 - output * output
(2)LSTM的初始化
在构造函数的初始化中,只初始化了与forward计算相关的变量,与backward相关的变量没有初始化。这是因为构造LSTM对象的时候,我们还不知道它未来是用于训练(既有forward又有backward)还是推理(只有forward)。代码实现过程如下:
class LstmLayer(object):
def __init__(self, input_width, state_width,
learning_rate):
self.input_width = input_width
self.state_width = state_width
self.learning_rate = learning_rate
# 门的激活函数
self.gate_activator = SigmoidActivator()
# 输出的激活函数
self.output_activator = TanhActivator()
# 当前时刻初始化为t0
self.times = 0
# 各个时刻的单元状态向量c
self.c_list = self.init_state_vec()
# 各个时刻的输出向量h
self.h_list = self.init_state_vec()
# 各个时刻的遗忘门f
self.f_list = self.init_state_vec()
# 各个时刻的输入门i
self.i_list = self.init_state_vec()
# 各个时刻的输出门o
self.o_list = self.init_state_vec()
# 各个时刻的即时状态c~
self.ct_list = self.init_state_vec()
# 遗忘门权重矩阵Wfh, Wfx, 偏置项bf
self.Wfh, self.Wfx, self.bf = (
self.init_weight_mat())
# 输入门权重矩阵Wfh, Wfx, 偏置项bf
self.Wih, self.Wix, self.bi = (
self.init_weight_mat())
# 输出门权重矩阵Wfh, Wfx, 偏置项bf
self.Woh, self.Wox, self.bo = (
self.init_weight_mat())
# 单元状态权重矩阵Wfh, Wfx, 偏置项bf
self.Wch, self.Wcx, self.bc = (
self.init_weight_mat())
def init_state_vec(self):
'''
初始化保存状态的向量
'''
state_vec_list = []
state_vec_list.append(np.zeros(
(self.state_width, 1)))
return state_vec_list
def init_weight_mat(self):
'''
初始化权重矩阵
'''
Wh = np.random.uniform(-1e-4, 1e-4,
(self.state_width, self.state_width))
Wx = np.random.uniform(-1e-4, 1e-4,
(self.state_width, self.input_width))
b = np.zeros((self.state_width, 1))
return Wh, Wx, b
(3)LSTM的前向传播
代码实现如下:
def forward(self, x):
'''
根据式1-式6进行前向计算
'''
self.times += 1
# 遗忘门
fg = self.calc_gate(x, self.Wfx, self.Wfh,
self.bf, self.gate_activator)
self.f_list.append(fg)
# 输入门
ig = self.calc_gate(x, self.Wix, self.Wih,
self.bi, self.gate_activator)
self.i_list.append(ig)
# 输出门
og = self.calc_gate(x, self.Wox, self.Woh,
self.bo, self.gate_activator)
self.o_list.append(og)
# 即时状态
ct = self.calc_gate(x, self.Wcx, self.Wch,
self.bc, self.output_activator)
self.ct_list.append(ct)
# 单元状态
c = fg * self.c_list[self.times - 1] + ig * ct
self.c_list.append(c)
# 输出
h = og * self.output_activator.forward(c)
self.h_list.append(h)
def calc_gate(self, x, Wx, Wh, b, activator):
'''
计算门
'''
h = self.h_list[self.times - 1] # 上次的LSTM输出
net = np.dot(Wh, h) + np.dot(Wx, x) + b
gate = activator.forward(net)
return gate
从上面的代码我们可以看到,门的计算都是相同的算法,而门和的计算仅仅是激活函数不同。使用calc_gate方法减少了很多重复代码。
(4)LSTM的反向传播
与反向传播相关的内部状态变量是在调用backward方法之后才初始化的。这种延迟初始化的一个好处是,如果LSTM只是用来推理,那么就不需要初始化这些变量,节省了很多内存。
def backward(self, x, delta_h, activator):
'''
实现LSTM训练算法
'''
self.calc_delta(delta_h, activator)
self.calc_gradient(x)
算法主要由两部分组成,一部分使计算误差项,另一部分是梯度的计算。
计算误差项的对应代码如下:
def calc_delta(self, delta_h, activator):
# 初始化各个时刻的误差项
self.delta_h_list = self.init_delta() # 输出误差项
self.delta_o_list = self.init_delta() # 输出门误差项
self.delta_i_list = self.init_delta() # 输入门误差项
self.delta_f_list = self.init_delta() # 遗忘门误差项
self.delta_ct_list = self.init_delta() # 即时输出误差项
# 保存从上一层传递下来的当前时刻的误差项
self.delta_h_list[-1] = delta_h
# 迭代计算每个时刻的误差项
for k in range(self.times, 0, -1):
self.calc_delta_k(k)
def init_delta(self):
'''
初始化误差项
'''
delta_list = []
for i in range(self.times + 1):
delta_list.append(np.zeros(
(self.state_width, 1)))
return delta_list
def calc_delta_k(self, k):
'''
根据k时刻的delta_h,计算k时刻的delta_f、
delta_i、delta_o、delta_ct,以及k-1时刻的delta_h
'''
# 获得k时刻前向计算的值
ig = self.i_list[k]
og = self.o_list[k]
fg = self.f_list[k]
ct = self.ct_list[k]
c = self.c_list[k]
c_prev = self.c_list[k - 1]
tanh_c = self.output_activator.forward(c)
delta_k = self.delta_h_list[k]
# 根据式9计算delta_o
delta_o = (delta_k * tanh_c *
self.gate_activator.backward(og))
delta_f = (delta_k * og *
(1 - tanh_c * tanh_c) * c_prev *
self.gate_activator.backward(fg))
delta_i = (delta_k * og *
(1 - tanh_c * tanh_c) * ct *
self.gate_activator.backward(ig))
delta_ct = (delta_k * og *
(1 - tanh_c * tanh_c) * ig *
self.output_activator.backward(ct))
delta_h_prev = (
np.dot(delta_o.transpose(), self.Woh) +
np.dot(delta_i.transpose(), self.Wih) +
np.dot(delta_f.transpose(), self.Wfh) +
np.dot(delta_ct.transpose(), self.Wch)
).transpose()
# 保存全部delta值
self.delta_h_list[k - 1] = delta_h_prev
self.delta_f_list[k] = delta_f
self.delta_i_list[k] = delta_i
self.delta_o_list[k] = delta_o
self.delta_ct_list[k] = delta_ct
计算梯度的代码如下:
def calc_gradient(self, x):
# 初始化遗忘门权重梯度矩阵和偏置项
self.Wfh_grad, self.Wfx_grad, self.bf_grad = (
self.init_weight_gradient_mat())
# 初始化输入门权重梯度矩阵和偏置项
self.Wih_grad, self.Wix_grad, self.bi_grad = (
self.init_weight_gradient_mat())
# 初始化输出门权重梯度矩阵和偏置项
self.Woh_grad, self.Wox_grad, self.bo_grad = (
self.init_weight_gradient_mat())
# 初始化单元状态权重梯度矩阵和偏置项
self.Wch_grad, self.Wcx_grad, self.bc_grad = (
self.init_weight_gradient_mat())
# 计算对上一次输出h的权重梯度
for t in range(self.times, 0, -1):
# 计算各个时刻的梯度
(Wfh_grad, bf_grad,
Wih_grad, bi_grad,
Woh_grad, bo_grad,
Wch_grad, bc_grad) = (
self.calc_gradient_t(t))
# 实际梯度是各时刻梯度之和
self.Wfh_grad += Wfh_grad
self.bf_grad += bf_grad
self.Wih_grad += Wih_grad
self.bi_grad += bi_grad
self.Woh_grad += Woh_grad
self.bo_grad += bo_grad
self.Wch_grad += Wch_grad
self.bc_grad += bc_grad
# 计算对本次输入x的权重梯度
xt = x.transpose()
self.Wfx_grad = np.dot(self.delta_f_list[-1], xt)
self.Wix_grad = np.dot(self.delta_i_list[-1], xt)
self.Wox_grad = np.dot(self.delta_o_list[-1], xt)
self.Wcx_grad = np.dot(self.delta_ct_list[-1], xt)
def init_weight_gradient_mat(self):
'''
初始化权重矩阵
'''
Wh_grad = np.zeros((self.state_width,
self.state_width))
Wx_grad = np.zeros((self.state_width,
self.input_width))
b_grad = np.zeros((self.state_width, 1))
return Wh_grad, Wx_grad, b_grad
def calc_gradient_t(self, t):
'''
计算每个时刻t权重的梯度
'''
h_prev = self.h_list[t - 1].transpose()
Wfh_grad = np.dot(self.delta_f_list[t], h_prev)
bf_grad = self.delta_f_list[t]
Wih_grad = np.dot(self.delta_i_list[t], h_prev)
bi_grad = self.delta_f_list[t]
Woh_grad = np.dot(self.delta_o_list[t], h_prev)
bo_grad = self.delta_f_list[t]
Wch_grad = np.dot(self.delta_ct_list[t], h_prev)
bc_grad = self.delta_ct_list[t]
return Wfh_grad, bf_grad, Wih_grad, bi_grad, \
Woh_grad, bo_grad, Wch_grad, bc_grad
(5)梯度下降算法的实现
在LSTM中我们使用梯度下降来更新权重,梯度下降的代码如下:
def update(self):
'''
按照梯度下降,更新权重
'''
self.Wfh -= self.learning_rate * self.Whf_grad
self.Wfx -= self.learning_rate * self.Whx_grad
self.bf -= self.learning_rate * self.bf_grad
self.Wih -= self.learning_rate * self.Whi_grad
self.Wix -= self.learning_rate * self.Whi_grad
self.bi -= self.learning_rate * self.bi_grad
self.Woh -= self.learning_rate * self.Wof_grad
self.Wox -= self.learning_rate * self.Wox_grad
self.bo -= self.learning_rate * self.bo_grad
self.Wch -= self.learning_rate * self.Wcf_grad
self.Wcx -= self.learning_rate * self.Wcx_grad
self.bc -= self.learning_rate * self.bc_grad
(6)梯度检查的实现
为了支持梯度检查,我们首先需要支持重置内部状态,实现的代码如下:
def reset_state(self):
# 当前时刻初始化为t0
self.times = 0
# 各个时刻的单元状态向量c
self.c_list = self.init_state_vec()
# 各个时刻的输出向量h
self.h_list = self.init_state_vec()
# 各个时刻的遗忘门f
self.f_list = self.init_state_vec()
# 各个时刻的输入门i
self.i_list = self.init_state_vec()
# 各个时刻的输出门o
self.o_list = self.init_state_vec()
# 各个时刻的即时状态c~
self.ct_list = self.init_state_vec()
最后,实现梯度检查的代码如下:
def data_set():
x = [np.array([[1], [2], [3]]),
np.array([[2], [3], [4]])]
d = np.array([[1], [2]])
return x, d
def gradient_check():
'''
梯度检查
'''
# 设计一个误差函数,取所有节点输出项之和
error_function = lambda o: o.sum()
lstm = LstmLayer(3, 2, 1e-3)
# 计算forward值
x, d = data_set()
lstm.forward(x[0])
lstm.forward(x[1])
# 求取sensitivity map
sensitivity_array = np.ones(lstm.h_list[-1].shape,
dtype=np.float64)
# 计算梯度
lstm.backward(x[1], sensitivity_array, IdentityActivator())
# 检查梯度
epsilon = 10e-4
for i in range(lstm.Wfh.shape[0]):
for j in range(lstm.Wfh.shape[1]):
lstm.Wfh[i, j] += epsilon
lstm.reset_state()
lstm.forward(x[0])
lstm.forward(x[1])
err1 = error_function(lstm.h_list[-1])
lstm.Wfh[i, j] -= 2 * epsilon
lstm.reset_state()
lstm.forward(x[0])
lstm.forward(x[1])
err2 = error_function(lstm.h_list[-1])
expect_grad = (err1 - err2) / (2 * epsilon)
lstm.Wfh[i, j] += epsilon
print
'weights(%d,%d): expected - actural %.4e - %.4e' % (
i, j, expect_grad, lstm.Wfh_grad[i, j])
return lstm
在这里只对Wf进行了检查,运行结果如下所示:
2. 序列到序列模型
Transformer 是一个基于自注意力的序列到序列模型,与基于循环神经网络的序列到序列模型不同,其可以能够并行计算。
序列到序列模型输入和输出都是一个序列,输入与输出序列长度之间的关系有两种情况。
(1)输入跟输出的长度一样;
(2)机器决定输出的长度。
序列到序列模型有广泛的应用,通过以下的应用举例可以更好地了解序列到序列模型。
语音识别、机器翻译与语音翻译
语音识别:输入是声音信号,输出是语音识别的结果,即输入的这段声音信号所对应的文字。
机器翻译:机器输入一个语言的句子,输出另外一个语言的句子。输入句子的长度是N,输出句子的长度是 N′。
语音翻译:我们对机器说一句话,比如“machine learning”,机器直接把听到的英语的声音信号翻译成中文。
其中存在语音翻译的原因是,世界上有很多种语言可能根本没有文字,因此也就没有可以让机器先进行语音识别然后再进行机器翻译的训练资料。
以闽南语为例,,闽南语的文字不是很普及,一般人不一定能看懂。因此我们想做语音的翻译,对机器讲一句闽南语,它直接输出的是同样意思的白话文的句子,这样一般人就可以看懂。我们可以训练一个神经网络使输入的闽南语输出为可以听懂的白话。
我们可以用视频网站上的带有中文字幕的乡土剧作为资料进行训练,在训练过程中可以忽略多噪声、音乐,乡土剧的字幕不一定跟声音能对应起来等因素的影响。
Text-To-Speech
输入文字、输出声音信号就是语音合成(Text-To-Speech)。
现在还没有真的做端到端的模型,以闽南语的语音合成为例,其使用的模型还是分成两阶,首先模型会先把白话文的文字转成闽南语的拼音,再把闽南语的拼音转成声音信号。从闽南语的拼音转成声音信号这一段是通过序列到序列模型 echotron 实现的。
聊天机器人
聊天机器人就是我们对它说一句话,它要给出一个回应。因为聊天机器人的输入输出都是文字,文字是一个向量序列,所以可用序列到序列的模型来做一个聊天机器人。我们可以收集大量的人为对话信息作为机器的训练资料。
问答任务
序列到序列模型在自然语言处理的领域的应用很广泛,而很多自然语言处理的任务都可以想成是问答(Question Answering,QA)的任务,例如:翻译、自动做摘要信息、情感分析等。所谓的问答就是给机器读一段文字,问机器一个问题,希望它可以给出一个正确的答案。
虽然各种自然语言处理的问题都能用序列到序列模型来解,但是对多数自然语言处理的任务或对多数的语音相关的任务而言,往往为这些任务定制化模型会得到更好的结果。针对各种不同的任务定制的模型往往比只用序列到序列模型的模型更好。
syntactic parsing
syntactic parsing给机器一段文字,机器要产生一个句法的分析树,即句法树。通过句法树告诉我们 deep 加 learning 合起来是一个名词短语,very 加 powerful 合起来是一个形容词短语,形容词短语加 is 以后会变成一个动词短语,动词短语加名词短语合起来是一个句子。
在句法分析的任务中,输入是一段文字,输出是一个树状的结构,而一个树状的结构可以看成一个序列,该序列代表了这个树的结构。
3. 梯度与方向导数
由于对梯度相关问题印象模糊,本次学习回顾了以下梯度与方向导数的概念以及相关推导。
总结
在本周,通过对LSTM代码实现的学习,进一步加深了对LSTM的理解。通过对梯度与方向导数相关概念的复习明白了梯度下降算法的原理。在下周我将进入transformer的相关学习。