深度学习
文章平均质量分 87
自然语言处理
三木小君子
这个作者很懒,什么都没留下…
展开
-
什么是卷积神经网络?
全连接神经网络处理图像最大的问题在于全连接层的参数太多。参数增多除了导致计算速度减慢,还很容易导致过拟合问题。所以需要一个更合理的神经网络结构来有效地减少神经网络中参数的数目——卷积神经网络。原创 2022-12-06 23:32:29 · 832 阅读 · 0 评论 -
全连接神经网络的优化
;从概念到不同层次了解全连接网络之后,最终需要通过神经网络对我们输入的数据进行若干次训练得到理想的结果。在训练过程中非线性因素:使激活函数去积分化、去微分化、梯度消失和梯度爆炸;批归一化、损失函数选择、过拟合与Dropout、模型正则等的问题都是需要不断优化和不断探测,本文将对其这些点进行总结。原创 2022-12-04 00:32:57 · 1090 阅读 · 0 评论 -
两层及N层全连接神经网络模型原理
深度学习是学习样本数据的内在规律和表示层次,在学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。全连接神经网络(MLP)便是基础的网络类型的之一,充分体现深度学习方法相比于传统机器学习算法的特点,即大数据驱动、公式推导、自我迭代更新、黑匣子训练等。本文将对MLP从两层及以上对其分析和解释。原创 2022-12-03 00:22:25 · 2435 阅读 · 0 评论 -
全连接神经网络单层模型原理
深度学习是学习样本数据的内在规律和表示层次,在学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。全连接神经网络(MLP)便是基础的网络类型的之一,充分体现深度学习方法相比于传统机器学习算法的特点,即大数据驱动、公式推导、自我迭代更新、黑匣子训练等。原创 2022-12-01 21:18:56 · 1023 阅读 · 0 评论 -
什么是全连接神经网络?
解释全连接神经网络之前首先需要了解神经网络而全连接神经网络模型是输入层、隐藏层和输出层构成原创 2022-12-01 00:28:59 · 3557 阅读 · 0 评论