- 博客(229)
- 资源 (1)
- 收藏
- 关注
原创 Arduino控制舵机详解(含代码)
目录舵机简介 硬件电路连接项目1: 舵机是一种位置(角度)伺服的驱动器。舵机只是一种通俗的叫法,其实质是一个伺服马达。在需要角度不断变化并可以保持的控制系统中应用广泛。如遥控机械人、飞机模型等。 舵机的转动角度为0~180°,其内部结构包括电机,控制电路和机械结构三部分。电机有三根线引出,分别接VCC、GNG和信号线。主要有两种引出线的格式:Arduino 实现功能:舵机0~180°来回转动。3.2 仿真结果图2 舵机连线及仿真图4 项目
2022-07-12 14:04:47
87796
29
原创 超强性能!人工原生动物优化算法(APO),附MATLAB代码
本研究提出了一种新颖的人工原生动物优化器(APO),其灵感来源于自然界中的原生动物。APO通过模拟原生动物的觅食、休眠和繁殖行为,来模仿其生存机制。我们建立了APO的数学模型,并实现了其元启发式算法的优化过程。通过实验模拟,并与32种先进算法进行比较,验证了APO的性能。研究中采用威尔科克森符号秩检验对APO与先进算法进行成对比较,并利用弗里德曼检验进行多重比较。首先,使用2022年IEEE进化计算大会基准测试中的12个函数对APO进行测试。
2025-12-08 10:07:38
1977
原创 最新中科院2区优化算法——LangEvin方程演化算法,附完整MATLAB代码
基于种群的优化算法在解决复杂的现实问题方面日益突出;然而,由于性能不足、缺乏严格的理论基础和过度依赖隐喻概念,它们经常面临批评。为了克服这些限制,本文介绍了基于朗格文方程(LI)的进化算法,这是一种基于物理定律和种群动力学的新型优化框架。LI采用朗格文方程的数学原理,该方程模拟热波动下粒子的随机运动,以指导全局和局部空间的搜索过程。该算法具有三个创新算子:搜索机制算子(SMO),它使用LangEvin动力学生成新的候选解决方案,以促进有效探索;
2025-12-08 09:52:20
590
原创 累了一天了,奖励自己一个新的改进点:趋势感知机制,附代码
此更新机制依赖于两个历史矩阵:历史搜索位置矩阵和适应度矩阵。是一个大小为 (N, Max_iter, dim) 的三维矩阵,表示 N 个个体在 dim 维问题中跨越 Max_iter 次迭代的搜索位置。相比之下,是一个大小为 (N, Max_iter) 的二维矩阵,记录了相应个体在每次迭代中的适应度值。迭代约束:该机制仅在迭代次数 i > n 时激活,确保至少有 n 代历史数据可用于趋势估计。趋势点计算:通过连接上一次迭代的搜索位置与上上次迭代的搜索位置来构建一条直线。
2025-10-22 19:35:29
879
原创 2025年9月青蒿素黏菌算法,附完整MATLAB代码
这项研究提出了一种新型的仿生元启发式,即青蒿素黏液霉菌算法(ASMA),它将黏液霉菌的自适应觅食行为与青蒿素的趋化特性相结合,青蒿素是一种以其抗疟药特性而闻名的化合物。ASMA通过动态平衡探索和开发的混合机制增强了全局优化性能。代理通过类趋化行为遍历搜索空间,而青蒿素启发的组件引导它们走向有希望的解决方案,从而加速收敛并提高解决方案的准确性。该算法在CEC 2017基准集上进行了评估,并展示了优于几种领先算法的性能。此外,ASMA用于动态频率约束下桁架结构的尺寸优化,这需要大量的特征值计算。
2025-09-22 11:06:19
1241
原创 2025年中科院1区最新优化算法——杜鹃鲶鱼优化器,附完整MATLAB代码
针对数值优化问题提出了一种新的元启发式算法Cuckoo Catfish Optimizer(CCO),它模拟了慈鲷中观察到的搜索、捕食和寄生行为。该算法的早期迭代侧重于执行多维包络搜索策略和压缩空间策略,结合辅助搜索策略有效地限制慈鲷的逃逸空间。该阶段确保了对解空间的广泛探索。在迭代的中间阶段,该算法使用过渡策略来促进从探索到开发的平稳过渡,赋予算法一定程度的探索能力和开发能力。在后期阶段,该算法利用混沌捕食机制在慈鲷周围制造扰动,以提高最优解的利用。
2025-09-22 10:24:35
1242
原创 25年一区新算法!薛定谔优化器:用于随机优化和工程挑战的量子对偶驱动元启发式
本文介绍了薛定谔优化器(SRA),这是一种新的元启发式算法,由量子力学原理驱动,特别是薛定谔方程和波粒二象性。SRA拥有平衡概率探索和确定性利用的孪生更新机制,便于在高维、复杂的搜索空间中进行有效导航。该算法在CEC 2019(低维)、CEC 2017(50D和100D)、CEC 2022(20D)等基准套件和八个真实世界的工程设计优化问题上进行了广泛的测试。与最先进的受物理启发和先进的元启发式算法的比较测试揭示了SRA的卓越性能。
2025-09-04 11:27:40
1726
原创 25年全新改进算法—混合樽海鞘开普勒优化算法,Salp Swarm–Kepler Optimization Algorithm, SSAKOA附完整MATLAB代码
可再生能源(RES)和电动汽车(EV)的快速扩散给现代微电网的优化设计和能源管理带来了重大挑战。本研究提出了一种新型混合元启发式,即Salp群-开普勒优化算法(SSAKOA),它将Salp群算法的全局探索能力与开普勒优化算法的基于轨道的开发效率协同结合。所提出的算法首先在一套23个标准基准函数上进行了严格评估,以验证其相对于已建立的元启发式的收敛行为、鲁棒性和解决方案质量。随后,SSAKOA被应用于包括光伏板、风力涡轮机、电池存储、氢气子系统(电解槽、氢气罐和PEM燃料电池)和双向电动汽车充电能力的并网混合
2025-08-31 14:28:18
1158
原创 2025年最新黑胸无刺蜂优化算法,附完整免费MATLAB代码
本文提出了一种基于无刺蜂(Tetragonula carbonaria)筑巢及调节蜂巢温度行为的新优化问题求解方法。无刺蜂优化算法(Tetragonula Carbonaria Optimization Algorithm,简称TGCOA)模拟了该蜜蜂在三种不同温度条件下的行为:低温时通过加固蜂巢结构来维持稳定、中温时以螺旋方式建造蜂巢、高温时通过稳定蜂巢环境来保持平衡。这些与温度相关的策略在解空间中动态平衡了全局开发与局部探索,从而实现更高效的搜索。
2025-08-31 13:59:12
790
原创 2025年8月新算法—云漂移优化算法(Cloud Drift Optimization Algorithm, CDO)
这项研究介绍了云漂移优化(数位长)算法,这是一种创新的自然启发的元启发式方法来解决复杂的优化问题。CDO模仿受大气力影响的云粒子的动态行为,在探索和利用之间取得了微妙的平衡。它具有自适应权重调整机制,可以改变云的实时漂移行为,从而在搜索空间中进行高效导航。使用基于云的漂移策略,数位长利用概率运动更有效地在优化环境中机动。该算法经过了各种既定的单峰和多模态基准函数的严格测试,与当代顶级优化技术相比,它展示了卓越的性能,具有更快的收敛速度、高鲁棒性和卓越的解算精度。
2025-08-21 20:16:15
1252
原创 求解大规模多旅行商问题的混合离散长鼻浣熊优化算法,附完整代码
旅行商问题(TSP)是一个经典的组合最佳化问题,也被归类为NP难问题。多个旅行商问题(MTSP)代表了TSP的一个变体,与TSP相比更加复杂,具有更大的实际意义。MTSP在机器人、交通和网络等各个领域都有广泛的应用。同样,MTSP也是一个NP难问题。MTSP的优化目标是最小化所有旅行商的路径长度之和。为了解决这个问题提出了一种混合离散长鼻浣熊优化算法(HDCOA)。最初,采用扇区划分方法预先分配城市节点给每个销售员。
2025-08-14 19:25:29
864
原创 算法应用上新!自适应更新策略差分进化算法求解球形多飞行器路径规划问题,附完整MATLAB代码
文章解决了球形多飞行器路径规划问题(SMAPPP),该问题旨在模拟未来探索地外行星或导弹轨迹的航天器路径规划研究。差分进化(DE)算法是一种经典的元启发式算法,应用于SMAPPP时不会产生令人满意的结果。受DE全局和局部搜索能力不平衡的约束,本文提出了一种自适应更新策略差分进化算法(SaUSDE),以增强其求解全局优化问题的性能。SaUSDE算法融合了四种截然不同的DE变体策略。在这些策略中,算法自适应且频繁地针对不同问题选择更合适的策略,从而有效地平衡全局和局部搜索能力。
2025-08-14 11:49:44
1641
1
原创 2025年受自适应差分进化-无人机路径规划的统一元启发式框架-附Matlab完整代码
与通常从单一生物或集体行为中汲取灵感的传统元启发式算法不同,本文从整体自然角度引入了一种新颖的元启发式方法。借鉴生物进化、种群内集体行为和生态系统自我调节机制的原理,所提出的算法被称为自然启发自适应差分进化(NIADE)。通过整合多种策略和全局优化概念,NIADE有效地解决了以众多相互作用变量为特征的复杂问题,从而克服了现有算法固有的限制,这些限制主要依赖于单一策略或局部优化方法。这种集成为解决复杂的优化挑战提供了创新途径。该算法的性能使用CEC2017和CEC2022的基准函数进行评估,并与七种主要算法
2025-08-12 17:47:27
1249
原创 2025年最新豺优化算法Dhole optimization algorithm-附Matlab免费代码
本文介绍了豺优化算法(DOA),这是一种创新方法,灵感来自豺的社交和狩猎活动,特别是他们的声音交流和协调技术。DOA模拟独特的行为,包括发声驱动的自适应决策和动态包形成,这些行为改善了优化过程中探索和开发之间的平衡。除了CEC-2019和CEC-2022基准集之外,还使用23个经典基准函数以及一系列现实世界的优化问题来评估DOA的功效。研究结果表明,相对于已建立的元启发式算法,DOA经常获得竞争性能,在收敛时间和鲁棒性方面经常超过它们,特别是对于复杂的高维问题。
2025-08-12 17:19:50
1198
原创 2025年中科院2区红杉优化算法Sequoia Optimization Algorithm-附Matlab免费代码
提出了红杉优化算法(SequoiaOA),这是一种受红杉森林生态系统自我调节动力学和弹性启发的新型元启发式方法,不同于传统的奇异生物学或现象学灵感。开发一个全面的生态系统驱动框架,包括数学建模、系统分析和通过CEC基准测试和多约束工程问题进行验证。当前的元启发式算法通常局限于来自单一视角、孤立的生物行为或个体现象的灵感,导致了推动本研究的内在局限性。与传统方法不同,本文从生态系统的角度探索复杂的生物系统,并进行全面的系统建模、分析和算法创新。
2025-08-12 16:57:56
1301
原创 上新!相量粒子群优化:PSO的一种简单有效的变体
粒子群优化器是一种著名的高效的基于种群和控制参数的算法,用于不同问题的全局优化。本文重点研究了PSO的一个新的初级样本,称为相量粒子群优化(PPSO),它是基于相位角(θ)的粒子控制参数建模,灵感来自数学中的相位角理论。这种相位角(θ)将PSO算法转换为自适应、三角、平衡和非参数的元启发式算法。PPSO的性能在包括单峰和多模态标准测试函数以及传统基准函数在内的实参数优化问题上进行了测试。在基本的 PSO(Kennedy 和 Eberhart 1995),每个粒子群的粒子都有一个当前位置向量和一个当前速度向量
2025-08-01 13:03:12
1055
原创 改进PSO算法!新自组织分层粒子群优化算法,具有变化的时间变化加速系数,附完整代码
粒子群优化(PSO)是自组织分层 PSO 与时间变化加速系数(HPSO-TVAC)的结合,由 Ratnaweera 和 co-authors [1] 提出,是一种有效的模型,由 Eberhart 和 Kennedy [2] 在 1995 年引入,受到中央动物群体(如鱼群)的启发,这些动物通过群体行为解决优化问题。在最近的研究 [3, 4] 中,建议 PSO 算法中的全局和整体搜索能力比 (2) 更好,以便从局部最优中逃脱并找到最佳值,如第 r 部分所示,在每次迭代的优化过程中,粒子的位置和速度。
2025-08-01 12:41:09
752
原创 2025年最新中科院1区最新算法!整体群优化算法(Holistic Swarm Optimization,HSO),附完整MATLAB免费代码
本文介绍了一种称为整体群优化(HSO)的新型无隐喻优化算法,旨在通过利用来自整个种群的数据来增强搜索过程。与依赖部分或局部信息的传统算法不同,HSO采用了一种综合方法,确保每个决策都由种群的整体分布和适应度景观来告知。该算法通过一个自适应框架动态平衡探索和开发,该框架集成了基于均方根(RMS)适应度的位移系数、基于模拟退火的选择和自适应变异。这种结构使HSO能够有效地导航复杂的多模态优化问题,同时避免局部最优。
2025-08-01 12:16:39
1327
原创 2025年5月SCI-螳螂虾优化算法Mantis Shrimp Optimization-附Matlab免费代码
本文提出了一种受螳螂虾(Gonodactylus smith ii)视觉能力启发的新型元启发式算法,该算法可以检测线性和圆偏振光信号,以确定有关偏振光源发射器的信息。受这些独特视觉特征的启发,螳螂虾优化算法(MShOA)在数学上涵盖了基于检测到的信号的三种视觉策略:随机导航觅食、猎物交战中的打击动态以及防御或从洞穴撤退的决策。这些策略平衡了在解空间上进行局部和全局搜索的开发和探索过程。
2025-07-31 11:09:22
1065
原创 2025年最新SCI-灰熊增脂优化器(Grizzly Bear Fat Increase, GBF)-附完整Matlab免费代码
本文介绍了一种新的受自然启发的优化算法,称为灰熊增脂优化器(GBFIO)。GBFIO算法模仿灰熊积累体脂为过冬做准备的自然行为,利用它们的狩猎、捕鱼和吃草、蜂蜜等策略。因此,GBFIO算法建模并考虑了三个数学步骤来解决最佳化问题:(1)根据过去的经验和嗅觉线索寻找食物来源(例如蔬菜、水果、蜂蜜、牡蛎);(2)猎杀动物并保护后代免受捕食者的伤害;和(3)捕鱼。
2025-07-31 10:47:45
938
原创 25年新算法!基于猛禽的优化算法(BPBO):一种元启发式优化算法,附完整免费MATLAB代码
优化是跨越多个工程和科学学科的关键挑战。本文介绍了一种独特的基于猛禽的优化(BPBO)算法,该算法受到捕食性鸟类精明狩猎技术的影响。该方法利用个体和群体狩猎技术,同时选择性地针对较弱的鸟类,以有效地平衡探索和开发策略。通过结合动态迁移策略来获取更合适的猎物,该方法增强了种群多样性,并降低了过早收敛的风险。鉴于持续的动态变化,这些策略的集成使BPBO算法能够有效地解决广泛的问题。
2025-07-30 17:01:01
852
原创 2025年KBS顶刊新算法-向光优化算法Phototropic growth algorithm-附Matlab免费代码
文章提出了一种称为向光生长算法(PGA)的新型优化算法,其灵感来自植物细胞响应阳光的生长模式。所提出的算法已经在两个基准测试函数套件CEC 2017和CEC 2020上进行了评估,并根据获得的解决方案的质量与其他已建立的metaheuristic-optimization算法进行了比较。PGA的有效性通过在六个具有约束的具有挑战性的工程设计问题上对其进行测试得到进一步证明,展示了其在解决未知搜索空间的现实世界问题时的稳健性。
2025-07-29 18:18:11
1803
原创 2025年JCR一区新算法-回旋镖气动椭圆优化算法Boomerang Aerodynamic Ellipse(BAE)-附Matlab免费代码
介绍了一种受飞行中回旋镖气动行为启发的新型元启发式优化器,明确建模释放角度和发射力如何塑造其轨迹。为了克服现有算法有限的局部搜索能力,本文提出了一种基于气动椭圆效应的均匀局部挖掘策略,并将这种机制嵌入到回旋镖运动模型中,以创建回旋镖气动椭圆优化器。于2025年7月最新发表在JCR 1区,中科院2区 SCI 期刊 Mathematics and Computers in Simulation。
2025-07-29 17:27:04
1190
原创 2025年1中科院1区顶刊SCI-投影迭代优化算法Projection Iterative Methods-附完整Matlab免费代码
Projection-Iterative-Methods-based优化器(PIMO)是一种受投影迭代方法启发的新型元启发式算法。PIMO引入了四种新的算子来引导种群走向最优收敛,同时提高了探索和收敛速度。这种方法首次提出,集成了Kaczmarz和随机梯度下降等技术,以提高性能并防止收敛到局部最优。PIMO的有效性通过三组实验得到验证。PIMO是一种受投影迭代法启发的新型元启发式算法。
2025-07-29 17:00:25
873
原创 2025年中科院1区SCI-冬虫夏草优化算法Caterpillar Fungus Optimizer-附Matlab免费代码
准确的参数识别对于固体氧化物燃料电池(SOFC)的优化控制和性能评估至关重要,因为其建模具有高度的非线性。为了解决这个问题,本研究开发了一种用于SOFC参数识别的新型冬虫夏草优化算法优化器,再加上用于数据预处理的广义回归神经网络(GRNN)。拟议的冬虫夏草优化算法的特点是强大的搜索能力和战略运算符,旨在克服局部最优的挑战。关于SOFC参数辨识的实现,最初采用GRNN从实验数据中滤除噪声。然后将精炼的数据与其他四种竞争性算法一起传输给财务总监,以识别未知的SOFC参数。
2025-07-29 16:41:26
872
原创 超全面已封装,可直接替换算法!智能算法应用于57个工程应用,CEC2020中57个真实世界问题附完整代码
表1:57个现实世界中的COPs的详细信息。D是问题的决策变量总数,g是不等式约束的数量,h是等式约束的数量,fx∗是已知的最佳可行目标函数值。
2025-07-29 16:14:41
1121
原创 多机器人路径规划的多策略自适应差分正余弦算法,Multi-robot path planning多机器人路径规划。附代码
最近进行了使用各种元启发式算法进行多机器人路径规划的研究。其中一种算法正弦余弦算法(SCA)不能在路径规划问题中产生令人满意的结果,由于单一的更新策略。有必要采用多种更新策略,并针对更广泛的问题提高其性能。我们提出了一种新的多策略自适应微分正弦余弦算法(sdSCA),它使用策略池,并允许更频繁地选择策略,从而导致更好的解决方案,将sdSCA应用于具有静态和动态障碍物的复杂环境中的在线多机器人路径规划。SCA是Mirjalili于2016年提出的基于数学的先进元启发式算法。该算法在更新解时采用正弦和余弦函数构
2025-07-29 15:20:50
1688
原创 2025年Nature子刊新算法——梯度下降算法Adam Gradient Descent-附Matlab免费代码
在过去的几年里,无数基于群体智能的元启发式算法被引入并广泛应用。尽管这些算法借鉴了生物行为,但它们相似的启发式范式和模块化设计导致了复杂优化问题中的不平衡探索和利用。将数学属性与随机搜索过程相结合的元启发式算法可以帮助突破传统的进化范式,增强个体优化。为了追求这一目标,本研究引入了一种基于数学的创新元启发式算法,称为亚当梯度下降优化器(AGDO),旨在解决持续优化和工程挑战。AGDO受到Adam优化器的启发,使用三个规则探索了整个搜索过程:渐进式梯度动量积分、动态梯度交互系统和系统优化算子。
2025-07-29 14:49:48
1212
1
原创 2025年最新中科院1区SCI-基尔霍夫定律优化算法Kirchhoff’s law algorithm-附完整Matlab免费代码
本研究引入了基尔霍夫定律算法(KLA)是一种受电路定律,特别是基尔霍夫电流定律(KCL)启发的新型优化方法。本文首次开发了基尔霍夫定律算法(KLA)。KLA是一种熟练且有竞争力的优化技术,它借鉴了电路定律,即基尔霍夫电流定律(KCL)。在这方面,电路中的可变电阻由不同种群的成本目标函数建模。相比之下,节点电压和电压源分别由算法种群的位置和迭代次数建模。目标是最小化通过支路的电流流或减少由种群位移实现的功率损耗,即改变节点电压。
2025-07-29 13:36:34
1204
原创 中科院1区top期刊!带有衰减因子的分数阶蜣螂优化算法(FORDBO),附完整代码
Dung beetle optimizer (DBO)的模型灵感主要源于自然界中生物蜣螂的滚球、舞蹈、觅食、偷窃与繁殖行为,是一种新颖的元启发式算法。然而,标准DBO在全局优化问题中的性能并不理想,存在着全局探索与局部开采能力不平衡、函数求解精度低与易陷入局部最优等问题。
2025-07-16 12:26:48
928
原创 DBO变体合集再更新!一种改进的DBO算法EIDBO,附完整代码获取
文章提出一种新颖的EIDBO引入了一种增强改进的蜣螂优化算法(EIDBO),该算法通过采用修正的收敛因子提高了标准蜣螂优化算法的收敛速度和优化精度。该方法利用改进的蜣螂优化算法的全局搜索能力。
2025-06-29 13:18:16
1578
原创 2025年中科院1区TOP期刊优化算法——田忌赛马优化算法(THRO),文末直接领取完整MATLAB代码
田忌赛马优化算法(THRO)是一种新型群体智能优化方法,其灵感源自中国古代田忌赛马故事。该算法通过模拟马匹间的策略性对抗,设计了个体对抗博弈和贪婪匹配两种机制,有效平衡了全局探索和局部开发。在结构上,THRO采用动态个体对抗模型,结合贪婪选择策略实现种群协同进化,克服了传统优化方法更新机制单一的问题。算法包含5种竞争场景,通过数学公式精确描述种群更新过程,展现了对2D和3D空间的良好搜索能力。该创新算法为解决复杂优化问题提供了新思路。
2025-06-27 13:19:25
1694
原创 2025年中科院三区全新算法,恒星振荡优化器:受自然启发的元启发式优化,完整MATLAB代码免费获取
文章提出了一种受自然启发的元启发式优化算法,称为恒星振荡优化器(SOO),SOO的灵感来自星震学领域,该领域检查恒星的振荡行为,以了解其内部结构、物理特性和进化阶段。SOO模拟在恒星脉动中观察到的动态膨胀和收缩阶段,以平衡勘探和开发。
2025-06-23 12:53:28
914
原创 2025中科院2区SCI-状态优化算法Status-based Optimization-附Matlab免费代码
近年来,现实世界的优化问题变得越来越复杂,挑战了传统确定性方法的有效性。本文介绍了基于状态的优化(SBO),这是一种受人类对地位提升的渴望启发的高效算法。通过模拟个人如何接近、学习或从高地位人物那里获得资源,SBO将这些社会模式转化为一种强大的方法,以挑战优化任务。2025年在线发表在JCR 1区,中科院2区 SCI计算机类期刊 Neurocomputing。
2025-06-22 15:31:39
985
原创 2025年最新增强型获取-共享知识算法,文末免费MATLAB源码分享
本文提出一种基于知识获取与分享机制的自然启发优化算法(GSK)及其改进版本(eGSK)。GSK算法模拟人类学习过程,通过初级和高级两个阶段进行知识获取与分享,其中初级阶段侧重广泛学习(早期-中期),高级阶段侧重定向学习(中期-晚期)。算法通过知识率(K)动态调节两阶段维度分配,并使用非线性递减公式(4)控制学习方式转变。针对GSK易陷入局部最优的问题,eGSK引入两项改进:1)基于适应度总和的选择标准(eGSK_1),通过比较新旧解的优劣保持种群多样性;2)自适应参数调节(eGSK_2),动态调整知识因子(
2025-06-22 12:53:45
656
原创 全新中科院1区应用全新上线,实时充电调度优化CS问题,完整代码
本文研究了电动汽车实时充电调度(CS)问题,针对高渗透率带来的计算复杂度挑战,提出了包含12个基准问题(CSBP)的测试套件。通过两阶段分析方法评估算法性能:首先识别可能最优解和竞争算法,然后分析稳定性指标(成功率、计算时间等)。研究建立了基于V2V拓扑的系统模型,考虑用户满意度,并设计了实时调度策略以转移高峰负荷。实验采用IEEE-33节点测试系统,评估了66种算法,最终筛选出5种最优算法。该工作为充电调度问题提供了标准化测试框架和算法评估方法。
2025-06-04 14:33:46
789
原创 PSO变体上新—基于适应距离平衡的改进相量粒子群优化算法
本研究提出了一种改进的相位粒子群优化算法(FDBPSO),通过引入适应度-距离平衡(FDB)选择方法来优化搜索性能。FDB方法计算解决方案候选者的适应度值与种群最佳个体的距离,通过归一化处理生成评分,选择高评分个体指导搜索过程。将FDB策略整合到PSO算法中,改善了粒子速度和位置更新机制。实验结果表明,FDBPSO算法在优化性能和收敛速度方面优于传统PSO算法,为智能优化领域提供了新的解决方案。该算法在工程网络物理系统等应用中展现出良好的潜力。
2025-06-03 12:18:55
740
原创 GGWO:基于凝视线索学习的灰狼优化器,完整MATLAB代码
提出了灰狼优化器(GWO)的一种改进变体,命名为基于注视线索学习的灰狼优化器(GGWO)。主要意图是减少GWO算法现有的高选择压力和低多样化,导致过早收敛、局部最优捕获和停滞问题。GGWO算法受益于两种新的搜索策略:邻居注视线索学习(NGCL)和随机注视线索学习(RGCL),受狼注视线索行为的启发。NGCL策略增强了开发能力和局部最优回避。然而,RGCL促进了种群多样性和探索与开发之间的平衡。GWO、NGCL和RGCL三种搜索策略的合作,促进了多样化、探索和开发。
2025-05-30 14:34:14
926
原创 即插即用的全新算法改进策略——引导学习策略:一种用于元启发式算法设计和改进的新型更新机制
性能。GLS通过分析种群历史位置的分散程度(Vo)来判断算法当前需要探索还是开发:当Vo较大时引导算法进行开发,利用历史最优个体生成新解;当Vo较小时引导算法进行探索,在全局空间随机搜索。GLS采用简单的数学公式实现指导,并通过归一化处理使策略适用于不同规模的问题。实验结果表明,GLS能有效平衡探索与开发,提高算法求解精度。该策略设计灵活,可方便地嵌入现有算法框架中,为元启发式算法提供了一种新的性能提升方法。
2025-05-28 19:11:32
925
原创 即插即用!全新记忆回溯策略:一种元启发式算法的进化更新机制,含完整免费MATLAB代码
本文提出了一种记忆回溯策略(MBS)来提升元启发式算法的优化性能。MBS受生物记忆机制启发,包含思维、回忆和记忆三个阶段:在思维阶段,算法通过回忆历史经验指导搜索;回忆阶段采用线索回忆机制匹配相似解;记忆阶段通过周期性遗忘和更新记忆库平衡探索与开发。MBS引入了记忆混淆和导向机制,分别模拟生物改变已知过程和趋近优良解的行为。实验证明该方法可有效增强算法的全局搜索能力和逃逸局部最优能力,适用于进化、物理和生物三类元启发式算法。关键创新在于将生物认知机制转化为数学建模,通过动态记忆管理实现搜索过程的自适应优化。
2025-05-28 13:17:16
1220
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅