MATLAB
文章平均质量分 76
群智能算法小狂人
全网(闲鱼,微信公众号、面包多)昵称:群智能算法小狂人。专注于群智能算法改进,开发。项目计划书转写,减速器设计,机械类相关设计。
展开
-
新算法转让(一种基于数学的元启发式算法)新的群智能算法转让,新的元启发式算法转让(独家发售)【仅售1份】
(Q1 top级,一区级)新算法转让新的元启发式算法转让||一种基于数学开发的元启发式算法||一种基于数学开发的超隐喻的元启发式算法。||新的群智能算法转让,新的元启发式算法转让1.开发完成的完整算法(配完整封装代码)2.灵感部分已完成,有word版本说明 公式mathtype编辑。3.使用cec2017(30、50和100维)和cec2022 20维两个测试集。原创 2024-04-14 13:56:15 · 539 阅读 · 0 评论 -
一种2024年新提出的算法改进版本||一种改进的肺性能的优化算法|肺性能的优化(ILPO)improved Lungs performance-based optimization||完整代码下载
本期介绍了基于肺性能的优化(LPO),这是一种新颖高效的算法,灵感来自人体肺部的规则和智能性能。LPO从呼吸系统的复杂机制和适应性中汲取灵感。肺部在氧气交换方面表现出显着的效率,展示了其功能的高水平优化。强制振荡技术测量气压和气流速率,以评估呼吸系统作为电阻抗。阻抗曲线有两个不同的组成部分,呼吸阻力(ZR)和呼吸电抗(ZX),可以从临床和工程角度进行分析,以深入了解呼吸系统的工作原理。原创 2024-03-31 15:44:48 · 533 阅读 · 0 评论 -
改进粒子群优化算法||粒子群算法变体||Improved particle swarm optimization algorithm
粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,其思想来源于鸟群寻食和鱼群捕食等自然现象。PSO算法通过模拟群体智能的行为,以一种启发式的方式寻找最优解,因此具有全局搜索能力强、收敛速度快等优点。本文将介绍标准粒子群算法的基本流程、算法实现和应用场景等方面。原创 2024-03-20 23:06:19 · 1705 阅读 · 0 评论 -
新算法转让[含灵感](一种基于迭代法开发的全新超隐喻的元启发式算法)新的群智能算法转让,新的元启发式算法转让【仅售1份】
(1)在CEC 2017 50维上:24/30个排名第一(算法开发完毕)与AO/AOA/NRBO/FHO/NOA/BA/BWO/OMA/PSA/TSA/MFO/WOA/SCA/SGA/SEA/GWO/GJO(包括高性能和23年新提出的算法).对比了24个算法:24年开发的新算法:LEA/NRBO/AROA。一经售出,不退不换。仅售1份,先到先得。原创 2024-03-11 14:52:14 · 427 阅读 · 0 评论 -
2024年新算法||吸引-排斥优化算法(Attraction–Repulsion Algorithm)
本期介绍一种求解约束全局优化问题的元启发式搜索算法——吸引-排斥优化算法Attraction–Repulsion Optimization Algorithm,AROA。该算法模拟自然界中发生的吸引-排斥现象相关的平衡。该成果于2024年2月发表在中科院1区SCI期刊 Swarm and Evolutionary Computation(if = 10)。原创 2024-03-08 23:39:46 · 1732 阅读 · 1 评论 -
【附完整下载方式】一种改进的冠豪猪优化算法(ICPO)|An Improved Optimization Algorithm for Crested Porcupine
受到凤头豪猪(CP)各种防御行为的启发,用于精确优化各种优化问题,特别是那些具有大规模攻击的问题。从最不具攻击性到最具攻击性,冠豪猪使用四种不同的保护机制:视觉、声音、气味和物理攻击。第一和第二种防御技术(视觉和声音)反映了CPO的探索行为,而第三和第四种防御策略(气味和物理攻击)反映了CPO的剥削行为。所提出的算法提出了一种称为循环种群减少技术的新策略,以模拟并非所有CP都激活其防御机制,而只激活那些受到威胁的介词。该策略促进了收敛速度和种群多样性。原创 2024-03-02 15:27:43 · 727 阅读 · 0 评论 -
新算法转让[含灵感](一种基于迭代法开发的全新超隐喻的元启发式算法)新的群智能算法转让,新的元启发式算法转让【仅1份,先到先得】
新算法转让新的元启发式算法(一种基于下山迭代法开发的元启发式算法)一种基于迭代法开发的超隐喻的元启发式算法。新的群智能算法转让,新的元启发式算法。开发完成的完整算法(配完整封装代码)灵感部分已完成,有word版本说明 公式mathtype编辑。测试结果。原创 2024-02-24 18:01:13 · 306 阅读 · 0 评论 -
麻雀搜索算法|Sparrow Search Algorithm(SSA)
在麻雀搜索算法中包含三种类型的麻雀个体,即发现者、跟随者和侦察者,三种类型对应三种行为。发现者在麻雀群体中占有主导地位,在群体中占有的比例一般为10%-20%,负责为整个群体寻找食物并且提供食物的方位和拥有食物的区域。跟随者会一直对发现者监控,一旦发现者找到食物,跟随者会立即跟随发现者去抢夺食物。此外,麻雀能够灵活的在发现者和捕食者之间切换。位于中心的麻雀有时会靠近附近的麻雀,以减少其危险范围。原创 2024-02-05 22:11:42 · 1041 阅读 · 0 评论 -
2024年新提出的算法|足球队训练算法(FTTA)Football team training algorithm: A novel sport-inspired meta-heuristic
根据足球队的训练方法,提出了一种新的元启发式优化算法——足球队训练算法(FTTA),它模拟了训练环节的三个阶段:集体训练、团体训练和个人额外训练。通过对CEC2005和CEC2020两组测试函数的测试,所提出的优化算法(FTTA)取得了最好的结果,远远超过了传统的灰狼优化(GWO)、鲸鱼优化算法(WOA)算法等。原创 2024-02-01 18:16:36 · 1673 阅读 · 0 评论 -
经典群智能算法|粒子群算法(PSO)|Particle Swarm Optimization|群智能算法应用|改进PSO|improvementParticle Swarm Optimization
粒子群算法(Particle Swarm Optimization,简称PSO)是一种进化计算算法,用于解决优化问题。该算法模拟了鸟群或鱼群中个体之间的协作行为,通过不断调整粒子的位置来搜索问题的最优解。PSO最初由James Kennedy和Russell Eberhart于1995年提出,灵感来自于模拟鸟群或鱼群中个体之间的协作和信息共享。PSO的基本思想是通过调整粒子的速度和位置,使粒子群朝着问题的最优解方向搜索。每个粒子都有一个位置和速度向量,表示其在搜索空间中的位置和前进方向。原创 2024-01-29 23:33:18 · 623 阅读 · 0 评论 -
一种改进的小龙虾优化算法大|Crayfish optimization algorithm(COA)|首次公开—原创代码
本文介绍一种新的全局优化算法——小龙虾优化算法Crayfish optimization algorithm(COA),模拟了小龙虾的避暑行为、竞争行为和觅食行为。该成果于2023年9月最新发表在Artifcial Intelligence Review。COA的灵感来自小龙虾的避暑、竞争、觅食行为。觅食阶段和竞争阶段是COA的开发阶段,避暑阶段是COA的探索阶段。原创 2024-01-25 14:36:47 · 906 阅读 · 3 评论 -
2024年新提出的算法:一种新的基于数学的优化算法——牛顿-拉夫森优化算法|Newton-Raphson-based optimizer,NRBO
开发了一种新的元启发式算法——Newton-Raphson-Based优化器(NRBO)。NRBO受到Newton-Raphson方法的启发,它使用两个规则:Newton-Raphson搜索规则(NRSR)和Trap Avoidance算子(TAO)以及几组矩阵来探索整个搜索过程,以进一步探索最佳结果。NRSR使用Newton-Raphson方法来提高NRBO的探索能力,并提高收敛速度以达到改进的搜索空间位置。TAO帮助NRBO避免局部最优a陷阱。原创 2024-01-25 13:54:02 · 2449 阅读 · 0 评论 -
灰狼算法Grey Wolf Optimizer跑23个经典测试函数|含源码
灰狼优化算法(Grey Wolf Optimization,GWO)是一种基于自然界灰狼行为的启发式优化算法。该算法模仿了灰狼群体中不同等级的灰狼间的优势竞争和合作行为,通过不断搜索最优解来解决复杂的优化问题。优点:较强的收敛性能,结构简单、需要调节的参数少,容易实现,存在能够自适应调整的收敛因子以及信息反馈机制,能够在局部寻优与全局搜索之间实现平衡,因此在对问题的求解精度和收敛速度方面都有良好的性能。缺点:存在着易早熟收敛,面对复杂问题时收敛精度不高,收敛速度不够快灰狼算法实现。原创 2023-09-17 20:53:45 · 3839 阅读 · 0 评论 -
AO天鹰优化算法|含源码(元启发式算法)|跑23个经典函数(含源码)
因此,所提出的AO算法的优化过程分为四种方法:用垂直弯腰的高腾空选择搜索空间,用轮廓飞行和短滑翔攻击在发散搜索空间内探索,用低飞行和慢下降攻击在收敛搜索空间内利用,以及用步行和抓取猎物俯冲。接近猎物时,Aquila根据猎物的随机运动在陆地上攻击猎物。在第三种方法(X3)中,当准确指定猎物区域,并且天鹰准备着陆和攻击时,天鹰垂直下降,进行初步攻击以发现猎物反应。是直到第t次迭代的最佳获得解,这反映了猎物的近似位置。是指第i次迭代前猎物的近似位置(最佳获得的解),是t的下一次迭代的解,由第一种搜索方法(原创 2023-09-16 23:33:13 · 1282 阅读 · 0 评论