Thinking Innovation Strategy 思维创新策略(TIS),该成果发表在著名SCI期刊 Applied Soft Computing (原来的中科院1区top顶刊,2025年2区)。TIS直接使用一行代码即可实现调用,高效简介
思维创新策略(TIS):一种新颖的元启发式算法设计与进化更新机制
- 文章提出了一种名为思维创新策略(TIS)的更新策略,TIS构建了一个完整的思维创新模型,TIS可以应用于大多数元启发式优化算法。
元启发式优化算法(MHS)是一种受自然现象启发的全局优化方法,在某些应用场景中表现出优越的性能。传统的优化算法主要利用两个概念:探索,以扩大搜索范围;开发,以提高解的准确性。然而,随着问题复杂性和应用场景的增加,MHS在平衡探索和开发以找到最优解方面面临挑战。因此,本文引入个体思维的创新特征,提出了一种新的思维创新策略(TIS)。TIS的目标不是寻找最优解,而是基于成功的个体实现全局优化,通过适者生存来提升算法性能。一些算法表现出显著的改进,证明了TIS在优化问题中的可行性和实用性。如TIS(LSHADE_SPACMA)
3.1. 设计思维转换策略的灵感
人类的认知过程和思维模式是复杂的,包括感觉、感知、注意力、记忆、思考等。人类的认知过程和思维模式是复杂的,包括感觉、感知、注意力、记忆、思考等。此外,人类思维模式中有各种深度知识(DOK)[63],[64]层次,从回答需要有限技能和知识的简单问题到解决复杂和新颖问题。从神经科学的角度来看[65],人类思维的本质是通过神经元之间及其连接模式的电信号传递来解释的,形成了我们大脑中的认知和思维框架。思维是与世界沟通的桥梁,也是整合认知反馈结果的工具。它还涉及将一个认知单元与另一个连接以产生思维结果。思维结果[66]是实际效果和从分析相关领域特定问题中得出的优秀解决方案。受人类思维的启发,本文引入了一种新策略(TIS),以提高算法优化性能并寻求更好的思维结果。
在思维过程中,大脑最初依赖于积累的知识和经验,称为深度知识1(DOK1)。这种知识是通过学习形成的,例如在数学中通过反复练习解决问题,从而快速触发类似问题的解决方案。DOK1的形成也受到社会环境、文化规范和其他因素的影响。然而,过度依赖DOK1可能导致对固定方法和其他解决方案的过度依赖,导致误解和错误决策。因此,从个人生活经验、想象力和从新颖灵感中积累的洞察力中获得的更高层次的知识(DOK2)至关重要,这可以帮助深入理解问题并提高创造性思维能力。通过整合多个层次的知识(DOK),大脑批判性地分析问题并以创新的方式寻求解决方案。
创新思维[67]以新颖和原创的方式解决问题,面对固定思维、惯性思维和封闭思维的主要障碍,容易陷入局部最优。与常规思维不同,创新思维具有非常规形式、辩证过程、开放范围、原创结果和积极方法。它超越传统界限,提出具有社会意义的解决方案,从非传统角度出发。例如,在数学问题分析中,复杂问题可能需要从动态行为、自然规律或新现象中汲取灵感,通过实验和经验整合经验和知识,并通过实验和经验综合解决方案。培养独立思考的能力可以增强创新能力和扩大想象力的范围。类似于优化算法,这种方法避免了陷入局部最优,通过批判性和创造性思维,导致更好的思维结果。简而言之,数学模型能够模仿人类创造性思维的强大能力来解决问题。
3.2. 思维转换策略的方法设计
在创新思维的模式设计中,创新被定义为利用所有可用资源实现特定目标以产生新的和有价值的结果。其中,新颖性和价值是关键要素。因此,模型设计以解决已知问题为主要目标,并明确目标是促进有效创新的基础。个人的可用资源来自其深度知识(DOK),这是通过积累外部信息形成的。通过模拟个体创新行为,创新思维策略在算法的探索阶段增强个体独立发展能力。在发展阶段,TIS策略扩展搜索空间并提高局部优化能力,以平衡算法的探索和开发,并提高整体性能。
TIS策略的计算过程包括:计算一个有效的信息事件,评估个体深度知识(DOK),评估个体想象力,并在这些信息的指导下增强算法的探索和开发阶段。这种整合在不同阶段促进创新思维,旨在实现准确探索和扩大搜索范围之间的平衡,并提高算法处理无约束和约束优化问题的能力。
此外,信息事件的有效性对于生物进化和繁殖至关重要。及时获取相关信息有助于适应新环境。为确保信息的相关性,信息根据评估次数的变化进行更新,因此它逐渐取代旧信息,保留更好的解决方案,同时丢弃低效的解决方案。这种策略利用个体在探索和开发中的成功经验,促进适者生存,并增强个体能力。
3.3. 思维创新策略的数学定义
在本文中,与传统方法直接计算个体适应度值不同,我们基于成功个体进行探索或开发,以提高算法的优化效果和平衡能力。
3.3.1. 信息事件
信息事件(IE)是识别成功个体并为算法提供进行彻底探索和开发的重要信息的关键基础。在算法的初始阶段,单个成功个体被随机选择并存储在IE中。随着算法的进展,采用适者生存的方法保留更成功的个体,这显著地为后续的创新思维过程提供了信息。
3.3.2. 创新思维
创新思维,或“创造性思维”,代表发明或发现新方法或表达的过程。它涉及从感知探索到理性探究的创新意识的提升,促进从感知认知到理性思维的过渡。这种系统化的思维方式是人类探索现象本质、获取新知识和发展新能力的有力方法。面对多样和复杂的问题时,个体通常依赖其深度知识(DOK)来寻找解决方案。DOK作为一个全面的心理资源库,支持批判性思维。DOK包括两个主要层次:
- DOK1:个人成长过程中积累的知识和经验。
- DOK2:关于自然现象的持续获取和存储的信息。
形式上,DOK可以表示为: DOK = ( DOK1 , DOK2 ) \text{DOK} = (\text{DOK1}, \text{DOK2}) DOK=(DOK1,DOK2)
这种结构化的表示强调了DOK如何使个体能够有效地解决传统直接问题和复杂、新颖的挑战,通过其强大的认知能力。DOK的计算如下所示:
DOK1
=
C
+
(
F
E
s
MaxFE
s
)
0.5
(1)
\text{DOK1} = C + (\frac{FE_s}{\text{MaxFE}_s})^{0.5}\tag1
DOK1=C+(MaxFEsFEs)0.5(1)
DOK2
=
F
E
s
1.0
(2)
\text{DOK2} = FE_s^{1.0}\tag2
DOK2=FEs1.0(2)
DOK
=
DOK1
+
DOK2
(3)
\text{DOK} = \text{DOK1} + \text{DOK2}\tag3
DOK=DOK1+DOK2(3)
这里,DOK1表示随时间积累的知识和经验。DOK2表示信息的持续获取和存储。C表示信息的常数。FEs表示当前评估次数,MaxFEs表示最大评估次数。
想象力(IM)指的是通过以新颖的方式协调感知材料来创造新图像的能力。个体想象力对于创新思维至关重要。其发展源于对先前知识和经验的批判性评估,以及对研究对象的全面观察和理解。基于个体认知,它通过直觉、想象力或组合整合多个维度,并在不受现有结论、观点、框架或理论限制的情况下提出新想法。IM的计算公式在公式(4)中提供。
IM = π × IE × rand (4) \text{IM} = \pi \times \text{IE} \times \text{rand}\tag4 IM=π×IE×rand(4)
其中rand是0到1之间的随机数。
创新思维植根于想象力、遗传、天赋、智慧商数和思维之间的联系。它发展成为一种强调新颖性、差异性和适当性的原创思维形式。批判性思维促进对当前信息的质疑和新科学认知想象力和灵感的创造。当个体旨在产生新颖和有价值的结果时,他们经常结合或转化他们的知识深度和丰富的想象力进行创新。这一过程有效地引导个体进行多方向思考,导致多样化的结果和更新的视角。计算创新思维的公式在公式(5)中提供。
popnew = tan ( IM − 0.5 × π ) + ( pop DOK + IE ) (5) \text{popnew} = \tan(\text{IM} - 0.5 \times \pi) + \left(\frac{\text{pop}}{\text{DOK}} + \text{IE}\right) \tag5 popnew=tan(IM−0.5×π)+(DOKpop+IE)(5)
这里,popnew表示种群的更新位置,pop是当前个体的位置。
3.4. 思维创新策略操作过程的图形表示
3.4.1. 个体思维过程展示
图1展示了模拟个体解决问题的思维步骤。在个体思维阶段,大脑首先读取有关问题的相关信息并保留信息事件。接下来,它计算个体成长过程中吸收的经验(DOK)和保留的自然信息。第三,它根据算法的当前状态实施创新思维,增强其在基础算法探索阶段的探索能力。同时,在探索阶段,它通过创新思维扩大个体的搜索范围,并在有效空间内进行多方向探索。这种方法有助于算法避免陷入局部最优。最后,通过创新思维获得更有效的个体解决方案,从而提高算法的优化性能。总之,创新思维的引入有效地引导个体进行多方向思考,并最大化问题空间的探索和开发。这增强了算法的灵活性和实用性,使其适用于各种类型的优化问题。
图1. 创新思维过程的示意图
图2展示了创新思维的创造性过程。在图中,“pop”代表当前个体的位置,“popnew”代表通过思维创新策略获得的最新个体解决方案的位置。“ER”表示基本算法的探索阶段,“ET”表示探索阶段,“IT”表示个体执行位置更新时创新思维策略的实施。橙色虚线带箭头连接“pop(1,:)”和“popnew(1,:)”,表示创新思维后的当前位置“pop(1,:)”更新为“popnew(1,:)”。同样,“pop(2,:)”到“popnew(2,:)”由紫色虚线带箭头连接,“pop(Np,:)”到“popnew(Np,:)”由蓝色虚线带箭头连接。以“pop(1,:)”为例,在个体进入TIS之前,基本算法处于探索阶段。此时,算法需要增强其探索能力。TIS将根据需要进行创新思维,使算法能够实现精确探索并找到更好的值。相反,个体的探索能力得到增强,有效扩大搜索范围,提高避免局部最优的能力。通过使用创新思维,“pop”实现的结果增强了位置更新的随机性以及逃避局部最优的能力。这有效地扩大了“pop”的搜索范围并增强了其搜索性能。
图2. 思维创新策略具体操作的示意图
3.4.2. 知识深度
个体思维源于人类对外部刺激的认知。常用的简单知识通常存储在我们大脑的第一和第二级知识中,代表我们通过学习保留的经验和技能。然而,对于未知或较少遇到的信息,如新的自然现象或不常见的知识,通常存储为第三和第四级知识。这种更深层次的知识在解决不熟悉的问题时作为创新的强大来源。个体思维知识的层次结构如图3所示。
图3. 知识层次结构示意图
3.5. TIS的伪代码和流程图实现
为了更好地展示TIS的使用,我们采用MPA算法TIS_MPA,该算法引入TIS作为在MPA算法中使用TIS的示例。TIS_MPA的伪代码显示在算法1中,TIS的具体操作步骤显示在算法2中。此外,为了便于理解特定实现过程,我们根据伪代码绘制了TIS_MPA的流程图,如图4所示。
TIS流程图
3.6 TIS完整代码
调用TIS方法
[m,person,personf,ui(i,:),children_fitness(i,:),FES]=TIS(pmax,m,person,personf,ui(i,:),fobj,FES,lu,FESmax);
完整TIS策略代码
function [m,person,personf,pop,popf,FES]=TIS(pmax,m,person,personf,pop,fobj,FES,lu,maxFEs)
i=1;
C=0.5;
pop(pop>lu(2,:))=rand.*(lu(2,pop>lu(2,:)) - lu(1,pop>lu(2,:))) + lu(1,pop>lu(2,:));
pop(pop<lu(1,:))=rand.*(lu(2,pop<lu(1,:)) - lu(1,pop<lu(1,:))) + lu(1,pop<lu(1,:));%召回
popf=feval(fobj,pop(i,:));
DOK1=C+(FES/maxFEs)^C;
DOK2=FES^10;
DOK=DOK1+DOK2;
IE=person(1,:);
IM=pi.*IE*rand;
popnew(i,:)=tan(IM-0.5)*pi+(pop(i,:)./DOK+IE);
popnew(popnew>lu(2,:))=rand.*(lu(2,popnew>lu(2,:)) - lu(1,popnew>lu(2,:))) + lu(1,popnew>lu(2,:));
popnew(popnew<lu(1,:))=rand.*(lu(2,popnew<lu(1,:)) - lu(1,popnew<lu(1,:))) + lu(1,popnew<lu(1,:));%召回
popnewf=feval(fobj,popnew(i,:));
FES=FES+1;
if popnewf(i,1)<popf
pop=popnew(i,:);
popf=popnewf(i,1);
end
person(m,:)=pop(1,:);
personf(m,1)=popf(1,1);
end
Heming Jia, Xuelian Zhou, Jinrui Zhang,Thinking Innovation Strategy (TIS): A novel mechanism for metaheuristic algorithm design and evolutionary update,Applied Soft Computing,Volume 175,2025,113071,https://doi.org/10.1016/j.asoc.2025.113071.