推荐系统公平性衡量指标——统计奇偶性、平等机会

       在推荐系统公平性中,统计奇偶性和平等机会是两种常用的公平性指标。它们通常用于评估推荐系统在推荐过程中对不同用户群体的公平性情况。

1.统计奇偶性(Parity):统计奇偶性指标关注的是推荐结果在不同用户群体之间的分布是否相对均衡。在推荐系统中,一个常见的统计奇偶性指标是通过比较不同群体(如性别、年龄、种族等)中获得推荐的比例来评估公平性。

2.平等机会(Equal Opportunity):平等机会指标旨在确保推荐系统对于所有用户群体都能提供相似的机会。在推荐系统中,平等机会指标通常关注的是对于某个特定属性(如阳性类别)的用户,推荐系统是否为他们提供了相似的机会(即有相似的推荐概率)。

       以性别为例来说明统计奇偶性和平等机会的计算过程。假设我们有一个推荐系统,要评估其在性别上的公平性。我们将用户分为男性和女性两个群体,然后比较在推荐结果中这两个群体的差异。

统计奇偶性(Parity)

  • 计算推荐给男性用户的比例:p_{\text{male}} = \frac{\text{The number recommended to male users}}{\text{ Total recommended quantity}}
  • 计算推荐给女性用户的比例:p_{\text{female}} = \frac{\text{The number recommended to female users}}{\text{ Total recommended quantity}}

     如果 |p_{\text{male}} - p_{\text{female}}|较小,则说明在推荐结果中性别之间的差异较小,符合统计奇偶性。

平等机会(Equal Opportunity)

  • 假设我们关注的是某个特定属性(例如购买某个产品),定义阳性类别为购买该产品。
  • 计算男性和女性用户中购买了该产品的比例:
  • p(\text{purchase} | \text{male}) = \frac{\text{The number of male users who purchased the product}}{\text{Total male users}}
  • p(\text{purchase} | \text{female}) = \frac{\text{The number of female users who purchased the product }}{\text{ Total female users}}

如果 |p(\text{purchase} | \text{male}) - p(\text{purchase} | \text{female})|较小,则说明对于购买该产品,男性和女性用户具有相似的机会,符合平等机会。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值