在深度学习中,隐藏表示(或称为隐藏层表示)通常是指神经网络中间层的输出结果,它捕捉了输入数据经过神经网络变换后的特征表示。在神经网络的训练过程中,输入数据经过多个隐藏层的非线性变换和组合后,最终得到隐藏表示,这些表示可以包含数据的高级抽象特征。
隐藏表示的作用在于将原始的输入数据通过神经网络的学习和变换,转化为更有意义、更具代表性的特征表示,这些特征表示可以用于模型的预测、分类或其他任务。隐藏表示的质量和表达能力直接影响着神经网络模型的性能。
在深度学习任务中,隐藏表示往往位于神经网络结构的中间层,可以理解为对输入数据进行了一系列非线性变换后得到的新的数据表征。通过隐藏表示,神经网络可以学习到数据中的复杂特征和模式,从而实现对输入数据的有效建模和预测。