[离散数学]命题逻辑P_2:命题联结词


前言

第二讲:命题逻辑

数理逻辑,就是用数学的方法研究逻辑推理的规律。

命题逻辑是指以逻辑运算符结合原子命题来构成代表“命题”的公式,以及允许某些公式建构成“定理”的一套形式“证明规则”。

本文命题联结词是命题逻辑的第二部分。


1. 引入

注意

回顾复合命题中,一般是通过联结词和标点符号将简单命题联结成复杂的语句,最常见的联结词主要有以下五种:
“或者”、“并且”、“不”、“如果……则……”、“当且仅当”

例子

  1. 四川是一个国家;
  2. 3是素数是奇数;
  3. 张谦是大学生是运动员;
  4. 如果周末天气晴朗,我们将到郊外旅游;
  5. 两个三角形全等当且仅当三角形的三条边全部相等。

2. 否定联结词

定义

P P P是任意一个命题,复合命题“非 P P P”(或“P的否定”)称为 P P P否定式(negation),记作 ¬ P \lnot P ¬P,“ ¬ \lnot ¬”为否定联结词 P P P为真当且仅当 ¬ P \lnot P ¬P为假。

例子

  • P P P:四川是一个国家。
  • ¬ P \lnot P ¬P:四川不是一个国家。
P P P ¬ P \lnot P ¬P
01
10

¬ \lnot ¬”是自然语言中的“非”、“不”、“没有”等的逻辑抽象。


3. 合取联结词

定义

P 、 Q P、Q PQ是任意两个命题,复合命题 P P P并且 Q Q Q”(或“ P P P Q Q Q”)称为 P P P Q Q Q合取式(conjunction),记作 P ∧ Q P\land Q PQ,“ ∧ \land ”为合取联结词 P ∧ Q P\land Q PQ为真当且仅当 P P P Q Q Q同为真。

例子

  • P : 3 P:3 P3是素数;
  • Q : 3 Q:3 Q3是奇数。
  • P ∧ Q : 3 P\land Q:3 PQ3既是素数又是奇数。
P P P Q Q Q P ∧ Q P\land Q PQ
000
110
100
111

注意

∧ \land ”是自然语言中的“并且”、“既…又…”、“但”、“和”、“与”、“不仅…而且…”、“虽然…但是…”、“一面…,一面…”等的逻辑抽象;但不是所有的“和”,“与”都要使用合取联结词表示,要根据句子的语义进行分析。

“但”“虽然…但是…”:对内容有转折含义,在逻辑上呈合取 - 同时发生。

例子

  1. 2和3的最小公倍数是6;
  2. 点a位于点b与点c之间。

这两个命题是简单命题,不能再分。


4. 析取联结词

定义

P 、 Q P、Q PQ是任意两个命题,复合命题“ P P P Q Q Q”称为 P P P Q Q Q析取式(disjunction),记作 P ∨ Q P\lor Q PQ,“ ∨ \lor ”为析取联结词。 P ∨ Q P\lor Q PQ为真当且仅当 P P P Q Q Q至少有一个为真。

例子

  • P P P:张谦是大学生;
  • Q Q Q:张谦是运动员。
  • P ∨ Q P\lor Q PQ:张谦是大学生或是运动员。
P P P Q Q Q P ∨ Q P\lor Q PQ
000
011
101
111

注意

联结词“ ∨ \lor ”是自然语言中的“或”、“或者”等的逻辑抽象。自然语言中的“或”有“可兼或”(或称为同或)、“不可兼或”(即异或)两种。严格来讲,析取联结词实际上代表的是可兼或,异或有时会使用单独的异或联结词“ ⊕ \oplus ”或“ ∨ ‾ \overline{\lor } ”来表示。

暂时可以使用可兼或来替代不可兼或,不会对现阶段逻辑推理造成影响。

例子

命题:张红生于1982年或1983年,令

  1. P P P:张红生于1982年;
  2. Q Q Q:张红生于1983年。

P P P Q Q Q不能同时为真,即为“不可兼或”。


5. 蕴涵联结词

定义

P 、 Q P、Q PQ是任两个命题,复合命题“如果 P P P,则 Q Q Q称为 P P P Q Q Q蕴涵式(implication),记作 P → Q P\rightarrow Q PQ,“ → \rightarrow ”为蕴涵联结词。 P → Q P\rightarrow Q PQ为假当且仅当 P P P为真且 Q Q Q为假。一般把蕴含式 P → Q P\rightarrow Q PQ中的 P P P称为该蕴含式的前件, Q Q Q称为蕴含式的后件。

例子

  • P P P:周末天气晴朗;
  • Q Q Q:我们将到郊外旅游。
  • P → Q P\rightarrow Q PQ:如果周末天气晴朗,则我们将到郊外旅游。
P P P Q Q Q P → Q P\rightarrow Q PQ
001
011
100
111

P P P为真时, Q Q Q为真则 P → Q P\rightarrow Q PQ为真; Q Q Q为假则 P → Q P\rightarrow Q PQ为假。
P P P为假时,为何 P → Q P\rightarrow Q PQ都为真呢?

注意

在自然语言中,前件为假,不管结论真假,整个语句的意义,往往无法判断。但对于数理逻辑中的蕴涵联结词来说,当前件 P P P为假时,不管 Q Q Q的真假如何,则 P → Q P→Q PQ都为真。此时称为“善意推定"。

例子

命题:如果角 A A A和角 B B B是对顶角,则角 A A A等于角 B B B真命题

这个命题是我们非常熟悉的一个定理,为真命题。
所以当前件为假时,这个定理依然成立。

蕴涵联结词示例

P P P:约翰学习微积分, Q Q Q:约翰是大学一年级学生
。则以下的复合命题均可用 P → Q P→Q PQ表示。

  1. 如果约翰学习微积分,则他是大学一年级学生。如果 P P P,则 Q Q Q
  2. 因为约翰学习微积分,所以他是大学一年级学生。因为 P P P,所以 Q Q Q
  3. 只要约翰学习微积分,他就是大学一年级学生。只要 P P P,就 Q Q Q
  4. 约翰学习微积分仅当他是大学一年级学生。 P P P仅当 Q Q Q
  5. 只有约翰是大学一年级学生,他才能学习微积分。只有 Q Q Q,才 P P P
  6. 除非约翰是大学一年级学生,他才能学习微积分。除非 Q Q Q,才 P P P
  7. 除非约翰是大学一年级学生,否则他不学习微积分。除非 Q Q Q,否则 ¬ P \lnot P ¬P

所有七种情况表达 P P P Q Q Q的前提条件,如果 P P P Q Q Q,即 P → Q P→Q PQ


5. 蕴涵联结词

定义

P P P Q Q Q是任两个命题,复合命题 P P P当且仅当 Q Q Q称为 Р Р Р Q Q Q等价式(equivalence),记作 P ↔ Q P \leftrightarrow Q PQ,“ ↔ \leftrightarrow ”为等价联结词(也称作双条件联结词)。 P ↔ Q P \leftrightarrow Q PQ为真当且仅当 P P P Q Q Q同为真假。

例子

  • P P P:两个三角形全等;
  • Q Q Q:三角形的三条边全部相等。
  • P ↔ Q P \leftrightarrow Q PQ:两个三角形全等当且仅当三角形的三条边全部相等。
P P P Q Q Q P ↔ Q P\leftrightarrow Q PQ
001
010
100
111

↔ \leftrightarrow ”是自然语言中的“等价”、“充分必要条件”、“当且仅当”等的逻辑抽象。


总结

本文介绍了命题逻辑中的命题联结词部分,对命题逻辑有进一步的了解。

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

H3T

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值