[离散数学]命题逻辑P_4:命题公式和真值表


前言

第四讲:命题公式和真值表

数理逻辑,就是用数学的方法研究逻辑推理的规律。

一个复合命题的真值只取决于其中的原子命题的真值,而与具体的命题内容无关。

命题公式( p r o p o s i t i o n a l f o r m u l a propositional formula propositionalformula)亦称合式公式,是数理逻辑术语,它是按照一定规律形成的符号序列,在命题演算中,公式通常用归纳定义给出。

本文命题公式和真值表是命题逻辑的第四部分。


1. 命题变元

常值命题定义

一个特定的命题是一个常值命题,它不是具有值“ T T T”(“ 1 1 1”),就是具有值“ F F F”(“ 0 0 0”)。

例子

如: P P P:今天天气晴朗
        Q Q Q:2是素数
        R R R:小明喜欢踢足球

命题变量定义

一个任意的没有赋予具体内容的原子命题是一个变量命题,常称它为命题变量 (或命题变元)(propositional variable),该命题变量无具体的真值,它的变域是集合 { T , F } {T,F} TF(或 { 0 , 1 } {0,1} 01)

注意

复合命题是由原子命题与联结词构成的命题。所以,当其中的原子命题是命题变元时,此复合命题也即为命题变元的函数,且该函数的值仍为“真”或“假”值,这样的函数可形象地称为“真值函数”或“命题公式”,此命题公式没有确切的真值。
例如: G = P ∧ Q → ¬ R G=P\land Q \rightarrow \lnot R G=PQ¬R.

G G G就成了类似 P 、 Q 、 R P、Q、R PQR的函数
f ( x , y ) = 2 x + y f(x,y)=2x+y f(x,y)=2x+y


2. 命题公式

定义

命题演算的合式公式(well formed formula , wff),又称命题公式(简称公式),按如下规则生成:

  1. 命题变元本身是一个公式;(如: P , Q , R , … P,Q,R,… PQR)
  2. 如G是公式,则( ¬ G \lnot G ¬G)也是公式;(如: ¬ P , ¬ Q , ¬ R , … \lnot P,\lnot Q,\lnot R,… ¬P,¬Q,¬R,)
  3. G , H G,H G,H是公式,则 ( G ∧ H ) (G\land H) (GH) ( G ∨ H ) (G\lor H) (GH) ( G → H ) (G\rightarrow H) (GH) ( G ↔ H ) (G\leftrightarrow H) (GH)也是公式;(如: P ∧ Q , ( ¬ Q ) → R , . . . P\land Q,(\lnot Q) \rightarrow R,... PQ,(¬Q)R,...)
  4. 仅由有限步使用规则(1)、(2)、(3)后所得到的包含命题变元、联结词和括号的符号串才是命题公式.
    (如: ¬ ( P ∧ Q ) ↔ R , ( ¬ Q ∨ ( P ∧ ¬ R ) ) → R , … \lnot(P\land Q) \leftrightarrow R,(\lnot Q\lor (P\land \lnot R))\rightarrow R,… ¬(PQ)R,(¬Q(P¬R))R,

反复利用前三个公式:
公式3 - P ∧ Q P \land Q PQ是公式;
公式2 - ¬ ( P ∧ Q ) \lnot (P\land Q) ¬(PQ)是公式;
公式3 - ¬ ( P ∧ Q ) ↔ R \lnot (P\land Q)\leftrightarrow R ¬(PQ)R是公式。

如果 G G G是含有 n n n个命题变元 P 1 、 P 2 、 P 3 、 … 、 P n P_1、P_2、P_3、…、P_n P1P2P3Pn的公式,可记为: G ( P 1 , P 2 , P 3 , … , P n ) G(P_1, P_2,P_3, …,P_n) G(P1,P2,P3,,Pn)或简写为 G G G

关于命题公式的说明

  1. 原子命题变元是最简单的合式公式,称为原子合式公式,简称原子公式
  2. 命题公式没有真值,只有对其命题变元进行真值指派后,方可确定命题公式的真值;
  3. 整个公式的最外层括号可以省略;公式中不影响运算次序的括号也可以省略。
  4. 在实际应用中,为了便于存储和运算,命题公式常用二元树的方式来表达。

例子

树


3. 公式的解释

定义

P 1 、 P 2 、 P 3 、 … 、 P n P_1、P_2、P_3、…、P_n P1P2P3Pn是出现在公式 G G G中的所有命题变元,指定 P 1 、 P 2 、 P 3 、 … 、 P n P_1、P_2、P_3、…、P_n P1P2P3Pn一组真值,则这组真值称为 G G G的一个解释,常记为 I I I

例子

设有公式: G = P → ( ¬ Q ∧ R ) G=P \rightarrow (\lnot Q \land R) G=P(¬QR)

  1. I 1 : P = 0 , Q = 1 , R = 0 I_1: P=0,Q=1,R=0 I1:P=0,Q=1,R=0 G G G的一个解释,使得 G G G的真值为1。

G = 0 → ( ¬ 1 ∧ 0 ) G=0\rightarrow (\lnot 1 \land 0) G=0(¬10)
      = 0 → 0 =0\rightarrow 0 =00
      = 1 =1 =1

  1. I 2 : P = 1 , Q = 0 , R = 0 I_2: P=1,Q=0,R=0 I2:P=1,Q=0,R=0 G G G的一个解释,使得 G G G的真值为0。

G = 1 → ( ¬ 0 ∧ 0 ) G=1\rightarrow (\lnot 0 \land 0) G=1(¬00)
      = 1 → 0 =1\rightarrow 0 =10
      = 0 =0 =0

注意

如果公式 G G G在解释 I I I下是真的,则称 I I I满足 G G G,此时 I I I G G G成真赋值;如果 G G G在解释 I I I下是假的,则称 I I I弄假于 G G G,此时 I I I G G G成假赋值

问题:当一个公式具有 n n n个命题变元时,那么这个公式最多有多少种解释呢?


4. 真值表

  • 一般来说,若有 n n n个命题变元,则应有 2 n 2^n 2n个不同的解释。
  • 利用真值表,可得到公式的所有成真赋值和成假赋值。

定义

由公式 G G G在其所有可能的解释下所取真值构成的表,称为 G G G真值表(truth table)。

真值表画法

一般我们将公式中的命题变元放在真值表的左边,将公式的结果放在真值表的右边。有时为了清楚起见,可将求公式的中间结果也放在真值表中。

例子

设有公式: G = ( P → ( ( ¬ P ↔ Q ) ∧ R ) ) ∨ Q G=(P→((\lnot P\leftrightarrow Q)\land R))\lor Q G=(P((¬PQ)R))Q,则 G G G的真值表为∶

4个命题变元,有8种可能的解释。

P P P      Q Q Q      R R R ¬ P \lnot P ¬P ¬ P ↔ Q \lnot P\leftrightarrow Q ¬PQ ( ¬ P ↔ Q ) ∧ R (\lnot P\leftrightarrow Q)\land R (¬PQ)R P → ( ¬ P ↔ Q ) ∧ R P\rightarrow (\lnot P\leftrightarrow Q)\land R P(¬PQ)R G G G
0 0 0      0 0 0      0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0      0 0 0      1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0      1 1 1      0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1
0 0 0      1 1 1      1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1      0 0 0      0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1      0 0 0      1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1      1 1 1      0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1      1 1 1      1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

可进一步简化为:

P P P      Q Q Q      R R R G = ( P → ( ( ¬ P ↔ Q ∧ R ) ) ∨ Q G=(P\rightarrow((\lnot P \leftrightarrow Q \land R))\lor Q G=(P((¬PQR))Q
0 0 0      0 0 0      0 0 0 1 1 1
0 0 0      0 0 0      1 1 1 1 1 1
0 0 0      1 1 1      0 0 0 1 1 1
0 0 0      1 1 1      1 1 1 1 1 1
1 1 1      0 0 0      0 0 0 0 0 0
1 1 1      0 0 0      1 1 1 1 1 1
1 1 1      1 1 1      0 0 0 1 1 1
1 1 1      1 1 1      1 1 1 1 1 1

总结

本文介绍了命题逻辑中的命题公式和真值表部分,对命题逻辑有深入的了解。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

H3T

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值