Gauss消元法求解线性方程组的Matlab实现(列主元、全主元)

最近数值分析有作业要求用Matlab实现Gauss消元法,记录在此。

问题如下:

1.列主元消去法

function []=Gauss_L(A,b)
%列主元求解线性方程组
ZG= [A b]; %增广矩阵
n=length(b);%维度
X=zeros (n, 1); %n维列向量
C=zeros (1, n+1);%n+1维行向量+初始化
for p=1:n-1
    [~,j]=max(abs(ZG(p:n, p))); %第p列的p到n元素绝对值中的最大值(Y为值,j为第几行)
    C=ZG(p,:); %C为ZG的第p行元素
    ZG(p,:)= ZG(j+p-1,:);ZG(j+p-1,:) =C; %交换第p行和最大的行
    for k=p+1:n
        m= ZG(k,p) / ZG(p,p);
        ZG(k,p:n+1) = ZG(k,p:n+1) - m*ZG(p,p:n+1);%消元
    end
end
b=ZG(1:n,n+1); A=ZG(1:n,1:n);%上三角化后的新增广矩阵[A b]
X(n)=b(n) / A(n,n);%计算最后一行的Xn
for q=n-1:-1:1%以-1为步长递增(实际是减少)
    X(q) = (b(q) - sum(A(q,q+1:n) * X(q+1:n))) / A (q,q) ;
end
for i=1:n
    value
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值