斐波那契数列通项公式一个莫名其妙的证明

上数学课的时候几何太烦了于是就莫名奇妙的想到了标题然后莫名其妙的想到了证明,现在发现貌似还没有找到相同的证明,于是就发了出来。

F 0 = F 1 = 1 , F i = F i − 1 + F i − 2 F_0=F_1=1,F_i=F_{i-1}+F_{i-2} F0=F1=1,Fi=Fi1+Fi2 (斐波那契数列)

x x x 满足 x 2 = x + 1 x^2=x+1 x2=x+1 p , q p,q p,q x x x 的两个解 ( p > q ) (p>q) (p>q)

发现此时 x x x 满足: x n = x n − 1 + x n − 2 x^n=x^{n-1}+x^{n-2} xn=xn1+xn2

于是我们发现:

F n x m + F n − 1 x m − 1 F_nx^m+F_{n-1}x^{m-1} Fnxm+Fn1xm1

= ( F n − 1 + F n − 2 ) x m + F n − 1 x m − 1 =(F_{n-1}+F_{n-2})x^m+F_{n-1}x^{m-1} =(Fn1+Fn2)xm+Fn1xm1

= F n − 1 x m + F n − 2 x m + F n − 1 x m − 1 =F_{n-1}x^m+F_{n-2}x^m+F_{n-1}x^{m-1} =Fn1xm+Fn2xm+Fn1xm1

= F n − 1 ( x m + x m − 1 ) + F n − 2 x m =F_{n-1}(x^m+x^{m-1})+F_{n-2}x^m =Fn1(xm+xm1)+Fn2xm

= F n − 1 x m + 1 + F n − 2 x m =F_{n-1}x^{m+1}+F_{n-2}x^m =Fn1xm+1+Fn2xm

由归纳法可得:

F n x n + F n − 1 x n − 1 F_nx^n+F_{n-1}x^{n-1} Fnxn+Fn1xn1

= F 1 x 2 n − 1 + F 0 x 2 n − 2 =F_1x^{2n-1}+F_0x^{2n-2} =F1x2n1+F0x2n2

= x 2 n − 1 + x 2 n − 2 =x^{2n-1}+x^{2n-2} =x2n1+x2n2

= x 2 n =x^{2n} =x2n

此时将 p , q p,q p,q 分别代入,发现

F n p n + F n − 1 p n − 1 = p 2 n F_np^n+F_{n-1}p^{n-1}=p^{2n} Fnpn+Fn1pn1=p2n

F n q n + F n − 1 q n − 1 = q 2 n F_nq^n+F_{n-1}q^{n-1}=q^{2n} Fnqn+Fn1qn1=q2n

解得 F n = p n + 1 − q n + 1 p − q F_n=\dfrac{p^{n+1}-q^{n+1}}{p-q} Fn=pqpn+1qn+1

x x x p = 1 + 5 2 , q = 1 − 5 2 p=\dfrac{1+\sqrt{5}}{2},q=\dfrac{1-\sqrt{5}}{2} p=21+5 ,q=215

化简 F n F_n Fn

F n = 1 5 [ ( 1 + 5 2 ) n + 1 − ( 1 − 5 2 ) n + 1 ] F_n=\frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^{n+1}-(\frac{1-\sqrt{5}}{2})^{n+1}] Fn=5 1[(21+5 )n+1(215 )n+1]

即斐波那契数列通项公式。

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值