回溯算法理论基础
77.组合
题解
vector<vector<int>> result;
vector<int> path;
void combine_backTracking(int n, int k, int startIndex) {
if (path.size() == k) {
result.push_back(path);
return;
}
for (int i = startIndex; i <= n; i++) {
path.push_back(i);
combine_backTracking(n, k, i + 1);
path.pop_back();
}
}
vector<vector<int>> combine(int n, int k) {
combine_backTracking(n, k, 1);
return result;
}
总结
k即为递归深度,每层递归传入的集合即为递归的宽度,递归终止时处理结果,递归返回也就是回溯时撤销上一步的结果。
216.组合总和3
题解
vector<int> path;
vector<vector<int>> result;
void back_tracking(int k, int n, int startIndex) {
if (path.size() == k) {
int sum = 0;
for (int elem: path) sum += elem;
if (sum == n) result.push_back(path);
return;
}
for (int i = startIndex; i <= 9; i++) {
path.push_back(i);
back_tracking(k, n, i + 1);
path.pop_back();
}
}
vector<vector<int>> combinationSum3(int k, int n) {
back_tracking(k, n, 1);
return result;
}
总结
与上一题如出一辙,只是在收集结果的时候判断一下是否符合要求。
17.电话号码的字符组合
题解
const string letterMap[10] = {
"", // 0
"", // 1
"abc", // 2
"def", // 3
"ghi", // 4
"jkl", // 5
"mno", // 6
"pqrs", // 7
"tuv", // 8
"wxyz", // 9
};
vector<string> result;
string s;
void tracking_back(string digits, int index) {
if (index == digits.size()) {
result.push_back(s);
return;
}
int digit = digits[index] - '0';
string letter = letterMap[digit];
for (int i = 0; i < letter.size(); i++) {
s.push_back(letter[i]);
tracking_back(digits, index + 1);
s.pop_back();
}
}
vector<string> letterCombinations(string digits) {
result.clear();
s.clear();
if (digits.size() == 0) {
return result;
}
tracking_back(digits, 0);
return result;
}
总结
注意本题中index的作用,用于指向当前参与递归的数字。除此之外与上面的题类似。