2024-arXiv-MarketSenseAI:大型语言模型能打败华尔街吗?揭示人工智能在选股中的潜力

arXiv | https://arxiv.org/abs/2401.03737

Website | https://www.marketsense-ai.com/

摘要:

本文介绍了MarketSenseAI,一个利用 GPT-4 的推理能力在金融市场中选股的创新框架。通过整合思维链和情境学习,MarketSenseAI 分析各种数据源,包括市场趋势、新闻、基本面和宏观经济因素,以模仿专家的投资决策。对标普100指数成份股进行为期15个月的实证测试,MarketSenseAI 在此期间提供了10%至30%的超额阿尔法,并实现了高达72%的累计回报,同时保持了与市场相当的风险状况。

一、引言

1.1 研究动机

在过去15年以及2008年金融危机之后,资本市场的结构和功能发生了重大变化,对价格发现产生了持久的影响:

  • **央行政策:**2008年的金融危机让市场参与者坚信,央行将动用一切可用的工具进行干预,以稳定市场。过度依赖央行干预,有可能扭曲市场机制和激励机制,因为它可能导致风险定价过低,并导致道德风险和全系统外部性的潜在增加。
  • **被动投资的兴起:**ETF提供对市场加权指数的“盲目”参与,对所有参与的股票不考虑其基本面价值。这可能导致股票大幅偏离其公允价值。
  • **散户投资者的重大影响:**散户投资者的出现,容易进入游戏化、杠杆化和衍生品交易平台,也对价格发现产生了重大影响。

上述因素共同破坏了价格发现的正常运作,导致投资者准确评估风险和评估资产价值的动机降低。

大型语言模型的出现为财务分析和股票选择带来了实质性的增强。这些复杂的人工智能(AI)系统,经过大量和类型的语料库的训练,不仅展示了复制人类认知复杂方面的能力,而且在许多情况下,已经超越了人类。

  • 通过快速分析大量金融数据,LLM可以辨别从收益报告到宏观经济研究的复杂细节,并比人类分析师更有效地处理大量非结构化数据,如新闻文章或专家意见
  • LLM提供了更客观的视角,在很大程度上不受情感和认知偏见的影响。此外,LLM超越了个人或团队分析师的局限性,无缝地将这种能力扩展到产品、市场和最重要的投资者。

1.2 主要贡献

本文主要介绍了一种基于LLM的创新股票分析服务 MarketSenseAI,主要贡献如下:

  • **LLM驱动的投资服务:**整合各种数据源,提供全面的股票投资见解。
  • **可解释的投资信号:**可解释的投资见解,赋予投资者权力并确保透明度。
  • **通用组件:**MarketSenseAI 的设计允许单独使用服务组件,满足不同投资者的需求。
  • **实证评价:**证明服务建议的可靠性和统计显著性。
  • **突出表现:**突显其潜力,超越高表现指数。
  • **独立财务顾问:**为散户投资者、资产管理公司和其他利益相关者提供优质投资见解的民主化途径。

二、主要方法

MarketSenseAI 的架构框架,包括负责数据输入的四个核心组件与输出最终建议(买入、持有、卖出)第五个组件,该组件综合了所有信息,并为各自的决策提供了简明的解释。每个组件都建立在 OpenAI 的 GPT-4 API 上,利用零样本提示(zero-shot Prompt)和上下文学习(in-context learning)来执行不同的任务。

image-20241106151233646

该框架旨在模拟专业投资团队的决策过程,旨在提供全面而深入的投资决策支持,涵盖市场各个方面的信息。

  • 渐进式新闻摘要器:追踪公司或其部门的最新发展,以保持对市场动态的敏感性。
  • 基本面摘要器:对公司的最新财务报表进行分析,以评估其财务健康状况
  • 股价动态和宏观经济环境摘要器:考虑价格行为动态,对当前环境进行宏观经济分析。

2.1 渐进式新闻摘要器 Progressive News Summarizer

公司特定的新闻(公告、报告、分析师意见和研究结果)对市场情绪和随后的股价的影响是不可低估的。

渐进式新闻摘要( P N S , t PN_{S,t} PNS,t)负责新闻获取、浓缩和制作股票最具影响力新闻的渐进式摘要。本研究使用EODHD2股票市场与财经新闻API作为新闻来源,获取与特定股票对应的每日新闻。

  • 对公司的每日新闻进行预处理,以排除与公司无关的文本(例如标题党文章),从而确保它以适当的格式进入提示框。提取股票的每日新闻,并生成简明的每日新闻摘要( N S , i N_{S,i} NS,i),集中存储。
  • 为了弥补特定日期摘要的不足,引入了渐进式新闻摘要器,包括公司新闻相关内容的持续叙述,特别是仍然重要的旧新闻。渐进式新闻摘要器通过将最新的新闻摘要( N S , τ N_{S,\tau} NS,τ)与之前的渐进式摘要( P N S , t − 1 PN_{S,t−1} PNS,t1)集成来解决这个问题**(即上个月的每日新闻摘要和上个月的渐进式新闻摘要)**。

股票 S S S在过去 τ \tau τ每日新闻摘要(总结每天新闻并连接起来): N S , τ = ⊕ i = t − τ t Summarize ( N S , i ) N_{S,\tau}=⊕_{i=t-\tau}^t\text{Summarize}(N_{S,i}) NS,τ=i=tτtSummarize(NS,i)

股票 S S S在时间 t t t渐进式新闻摘要(总结前一天的渐进式新闻摘要和当天的每日新闻摘要): P N S , t = Summarize ( P N S , t − 1 , N S , τ ) PN_{S,t}=\text{Summarize}(PN_{S,t-1},N_{S,\tau}) PNS,t=Summarize(PNS,t1,NS,τ)

Prompt:

  • **当前渐进式摘要:**公司及其股票在特定月份和年份的最新摘要。
  • **每日新闻摘要:**新闻文章,分为事实新闻和分析师意见。
  • **说明:**整合最相关的信息,区分事实新闻和分析师意见。

image-20241106151314991

渐进式新闻摘要器对苹果公司在2023年10月和11月里新闻的变化:

  • 10月,新闻的焦点集中在苹果在科技行业的重要作用上。苹果推出了iPhone 15系列,并更新了Apple Watch和AirPods。这一时期也凸显了智能手机销售方面的挑战地缘政治问题的影响以及股市表现的波动。本月有报道称,苹果有意收购f1转播权,以及CEO蒂姆•库克出售公司股票,突显出该公司战略利益和高管决策的多元化。
  • 11月,虽然许多先前的主题仍在继续,但出现了新的主题,包括苹果的销售放缓、智能手机市场的竞争压力,以及它在合作伙伴关系上的战略转变,包括终止与高盛的信用卡协议。公司在可持续发展方面的努力和M3芯片的推出,以及流媒体内容的扩张都得到了强调。

image-20241106151343731

最终输出的渐进式新闻摘要(月频):

image-20241106152700699

2.2 基本面摘要器 Fundamentals Summarizer

基本面数据在预测性财务分析中至关重要,它提供了反映公司当前健康状况和未来轨迹的可量化指标。

基本面摘要( F S F_{S} FS)的目标是提供公司财务状况的事实性概览,而非直接提供投资建议。本研究使用EODHD2股票市场与财经新闻API作为财务数据来源,获取与特定股票对应的季度财务报告。

为了方便对财务数据进行比较,作者在将数据输入提示之前进行了预处理

  • 采用数字缩写技术,使用million、billion、thousand等单位来表示大数,从而将它们转换为更紧凑的格式,并使财务数据标准化,确保提供给LLM输入的一致性和清晰度。
  • 来自不同季度的数据以表格的形式并排放置,通过比较最近的季度财务报表,对盈利能力、收入轨迹、债务指标和现金流动态等方面进行了深入研究,能够发现财务业绩的变化,并可能将其与渐进式新闻联系起来。

股票 S S S基本面摘要(总结前多个季度的财务数据): F S = Summarize ( Standardize ( ∪ i = 1 n FinancialData S , q i ) ) F_{S}=\text{Summarize}(\text{Standardize}(\cup_{i=1}^n\text{FinancialData}_{S,q_i})) FS=Summarize(Standardize(i=1nFinancialDataS,qi))

Prompt:

  • **财务报表:**最近几个季度资产负债表、利润表和现金流量表的主要财务数据。
  • **分析重点:**盈利能力、收入增长、债务水平和现金流的最新趋势和发展。
  • **说明:**进行分点 bullet-form 分析

image-20241106152105740

最终输出的基本面摘要(季频):

image-20241106152720843

2.3 股价动态摘要器 Stock Price Dynamics Summarizer

股价动态摘要( P S , t P_{S,t} PS,t)对股票的价格趋势和业绩指标进行深入分析和上下文处理。该组件不仅关注目标股票,还根据公司描述和行业将其表现与五只最相似的股票进行比较,并包括标准普尔500指数所代表的市场背景

  • **识别相似股票:**利用 MPNet 语言模型生成嵌入并计算相似性分数。股票描述被 MPNet 编码成高维向量,捕捉每个公司的独特特征和活动,计算标准普尔500指数成份股的两两相似性得分。
  • image-20241106180547029

股票 S S S在时间 t t t股价动态摘要(总结目标股票和五只相似股票的表现): P S , t = Summarize ( Metrics S , t , ∪ j = 1 n Metrics P j , t ) P_{S,t}=\text{Summarize}(\text{Metrics}_{S,t},\cup_{j=1}^n \text{Metrics}_{P_j,t}) PS,t=Summarize(MetricsS,t,j=1nMetricsPj,t)

Prompt:

  • **业绩指标:**使用累积收益、波动率、夏普比率、最大回撤和相关矩阵等指标对股票业绩进行分析。
  • **比较分析:**将股票表现与相关股票和标准普尔500指数进行比较。
  • **说明:**以简明和事实的报告总结调查结果。

image-20241106152341648

最终输出的股价动态摘要(月频):

image-20241106152624780

2.4 宏观经济环境摘要器 Macroeconomic Environment Summarizer

进行深入的宏观经济分析对于做出明智的投资决策和有效的资本配置至关重要。这种分析提供了对整体经济健康和表现的重要见解,对个别公司的盈利能力和价值以及更广泛的股票市场产生重大影响。

宏观经济环境摘要( M t M_{t} Mt)每两周综合投资报告和研究文章,提供复杂经济数据和趋势的简洁摘要。信息来源包括高盛、摩根士丹利、瑞银和贝莱德等主要银行和投资机构的各种公开报告。

  • 将这些报告和文章转化为文本形式,然后利用GPT4总结各个报告。
  • 将这些单独的总结浓缩为一个全面的概述。

在时间 t t t宏观经济环境摘要(总结宏观经济投资报告和研究文章): M t = Summarize ( ∪ j = 1 N Summarize ( Report j , t ) M_{t}=\text{Summarize}(\cup_{j=1}^N \text{Summarize}(\text{Report}_{j,t}) Mt=Summarize(j=1NSummarize(Reportj,t)

Prompt:

  • **初始摘要重点:**单个报告的摘要,强调关键的宏观经济因素,包括中央银行政策、地缘政治见解和市场前景。
  • **综合和情绪分析:**对所有报告进行深入分析,以提取共识和分歧观点,重点是按资产类别或投资维度分类的情绪分析。
  • **说明:**要求提供详细和事实的报告,重点是当前的市场情绪和按资产类别进行分析分类。

image-20241106152410852

最终输出的宏观经济环境摘要(两周频):

image-20241106152557023

2.5 信号生成器 Signal Generation

信号生成器集成了来自新闻、基本面、股价动态和宏观经济分析组件的文本输出,生成投资决策信号(买入、持有、卖出),以及对特定股票的全面投资建议,以及详细的基本原理。GPT-4 采用思维链方法(CoT),通过多步分析引导模型做出关于下个月投资组合分配的决策。

股票 S S S信号生成器 I S = f ( N S , F S , P s , M ) I_{S}=f(N_S,F_S,P_s,M) IS=f(NS,FS,Ps,M)

Prompt:

  • **新闻分析:**评估有关目标公司的最新新闻摘要,评估其对股票表现的潜在影响。
  • **价格动态分析:**将股票的价格动态与相关股票和整体市场的价格动态进行比较,提供一个相对的表现视角。
  • **宏观经济环境分析:**评估更广泛的宏观经济景观及其对目标公司的影响,考虑到全球经济趋势和事件。
  • **基本面分析:**审查公司的基本财务数据,分析其当前财务状况和未来前景。

最终输出的信号以及解释(月频):

image-20241106152531583

不同组件与信号的文本相似性分析:

image-20241106152459789

image-20241106152834907

  • 新闻和股价动态摘要中的高相似性得分(平均得分分别为0.923和0.907)反映了模型对这些快速变化因素的重视,认识到它们对股价的直接影响。这对于短期的、每月的预测尤其重要,因为当前的发展和价格趋势可以显著地影响市场行为。
  • 基本面和宏观经济摘要平均相似度得分分别为0.849和0.803,对模型的月度决策的直接影响较小。每季度更新一次的基本面数据,对一家公司的财务健康状况提供了一个稳定但变化较少的看法,而宏观经济数据更广泛、更通用,对短期投资决策的影响更为温和。

三、实验

3.1 数据

股票池:标准普尔100指数成份股

评估期:2022年12月1日至2024年3月31日

  • **新闻:**2022年12月1日至2024年2月29日共发布文章163,483篇,每天每只股票新闻数平均数4.57,标准差5.49。每篇文章的文字平均数867,标准差1196。产生了35229份针对公司的每日新闻摘要和1500份月度渐进式摘要。
  • **基本面:**从2022年第二季度开始,财务数据收集自612份季度报告。产生了608份基本面摘要,平均每只股票约6个。
  • **描述:**每只股票及其所属行业的简明描述,由算法1用来识别相似的股票。
  • **价格:**2022年1月1日至2024年2月29日的历史每日股票价格(调整后的收盘价),以计算股价动态。产生了1,500份股价动态摘要,每个股票每月生成一个摘要。
  • **宏观:**主要金融机构在2023年4月至2023年2月发布的187份投资报告(每份20-30页)。产生了11个宏观经济摘要。

信号生成器在每个月底输入最新的可用摘要(新闻,基本面,价格动态,宏观)。其中所有股票的宏观经济摘要都是相同的,但只有当新的季度报告出现时,基本面摘要才会更新。新闻和价格摘要更加动态,每个月提供最新的股票具体见解。产生了1500个信号,其中338个买入,1150个持有和12个卖出信号。

3.2 Bootstrapping 评估结果

在 MarketSenseAI 的信号矩阵中随机抽取样本,创建10,000个随机组合用于 Bootstrapping,使用两个指标用于对比 Market Sense AI 与随机信号。

image-20241106185109856

**投资组合的累积收益:**坚持买入、卖出、同时买入和卖出,等权并月度再平均。
Performance = ∏ i = 1 n ( 1 + ∑ j = 1 N P L ( i , j ) signals per month at  i ) \text{Performance}=\prod_{i=1}^n(1+\frac{\sum_{j=1}^NP_L(i,j)}{\text{signals per month at }i}) Performance=i=1n(1+signals per month at ij=1NPL(i,j))
**准确率:**评估信号的有效性,以下一个月的实际收益作为参考基准。
H R L = ∑ ( i , j ) ∈ V L I ( P L ( i , j ) > 0 ) length ( V L ) HR_L=\frac{\sum_{(i,j)\in V_L}I(P_L(i,j)\gt0)}{\text{length}(V_L)} HRL=length(VL)(i,j)VLI(PL(i,j)>0)
其中, L L L为信号; P L ( i , j ) = m ( i , j ) × r ( i , j ) P_L(i,j)=m(i,j)\times r(i,j) PL(i,j)=m(i,j)×r(i,j)为资产 j j j在时刻 t t t的表现,信号*收益; V L V_L VL为基于模型预测和信号的收益集合。

**收益趋势:**实际收益减所有资产的平均收益。
r ′ ( i , j ) = r ( i , j ) − r ( i , ⋅ ) ‾ r'(i,j)=r(i,j)-\overline{r(i,·)} r(i,j)=r(i,j)r(i,⋅)
image-20241106190036951

3.3 市场表现评估结果

image-20241106191104374

image-20241106191125044

3.3.1 基本策略

基本策略结果:

image-20241106191536920

image-20241106191609334

image-20241106191623625

3.3.2 GPT 排序策略

将所有“买入”信号的解释输入GPT-4,要求将这些解释按0到10的等级进行排序,10表示强烈买入。

image-20241106191145430

条形图描述了至少有五个“买入”信号的股票在几个月内“买入”信号的频率。散点图描述了GPT-4根据每个“买入”建议背后解释的强度、深度和相关性分配的平均等级。

image-20241106191732963

排序策略结果:

image-20241106191552092

image-20241106191647038

0-1739633496333)]

条形图描述了至少有五个“买入”信号的股票在几个月内“买入”信号的频率。散点图描述了GPT-4根据每个“买入”建议背后解释的强度、深度和相关性分配的平均等级。

[外链图片转存中…(img-jF8BxJki-1739633496334)]

排序策略结果:

[外链图片转存中…(img-JdzQFmBI-1739633496334)]

[外链图片转存中…(img-Ea9HlM8N-1739633496334)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值