arXiv | https://arxiv.org/abs/2502.00415
Website | https://www.marketsense-ai.com/
MarketSenseAI 1.0 | https://arxiv.org/abs/2401.03737
摘要:
MarketSenseAI 是一种全新的整体股票分析框架,利用大型语言模型(LLMs)处理金融新闻、历史价格、公司基本面以及宏观经济环境,以支持股票分析与选择中的决策制定。在本文中,我们介绍了由大型语言模型技术迅猛发展推动的 MarketSenseAI 最新进展。通过结合检索增强生成和大型语言模型智能体的全新架构,该框架能够处理 SEC 文件和收益电话会议,并通过系统化处理各类机构报告来丰富宏观经济分析。与上一版本相比,在基本面分析准确性方面取得了显著提高。在 2023-2024 年间对标普 100 指数股票的实证评估显示,MarketSenseAI 累计回报率为 125.9%,而指数回报率为 73.5%,同时保持了相似的风险水平。
一、引言
MarketSenseAI 是一个全面的框架,旨在利用大规模语言模型(LLMs)进行股票分析和选择。通过处理财务新闻、历史股价、公司基本面和宏观经济数据,它旨在支持现代金融市场中的多维度决策过程。
开发 MarketSenseAI 的动力源于现有系统性股票分析方法的局限性。许多方法依赖于时间序列建模,有时还会补充情感指标,但很少能够整合可用数据的广泛范围。另一个重大挑战在于处理不同采样频率的数据:宏观经济指标和基本面因素通常比市场数据具有更低的发布频率,因此需要复杂的方法来确保数据的一致性。
本文的贡献在于展示了近期在大规模语言模型(LLM)架构方面取得的进展如何能够增强 MarketSenseAI 框架内的基础性和宏观经济分析:
- **精炼的基本面分析:我们引入了一种链式智能体(CoA)**方法,能够精细处理大规模金融数据,如 10-Q 和 10-K 报告以及财报电话会议记录,从而提供更准确的企业财务状况评估。
- **增强的宏观经济分析:一种专门的检索增强生成(RAG)**模块,采用语义切块和基于假设密集嵌入(HyDE)的检索方法,处理更广泛的专家报告和指标,提供传统分析中经常缺失的宏观经济背景。
- **全面的现实世界评估:**使用标普 100 指数股票进行为期两年(2023-2024 年)的实验,以及使用标普 500 指数股票进行 2024 年的实验,展示了我们所提议系统的稳健性,揭示了基本面分析准确性的显著提高,并且在与基准指数相当的风险下,实现了 8.0% - 18.9% 的持续超额回报。
二、主要方法
MarketSenseAI 为一个模块化系统,综合各种类型的金融信息,由五个主要的 LLM 智能体组成:
- **新闻智能体:**负责汇总和浓缩与特定股票相关的新闻文章。每日的原始文本首先被提炼成简洁的摘要,然后将这些摘要与之前的摘要整合,形成近期发展情况的逐步叙述。这种机制确保了虽然较旧但仍然相关的新闻(例如,正在进行的法律诉讼)仍会成为不断演变的背景的一部分。
- **基本面智能体:**专注于分析每家公司的财务报表。为了处理大量且往往复杂的数值数据&#x