目录
一、算法定义和特性
1、数据结构与算法的关系:
数据结构服务算法。
2、算法的定义:
算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列,并且每条指令表示一个或多个操作。
3、算法的特性(5个):
①输入、输出:
算法具有零个或多个输入。
算法至少有一个或多个输出。
②有穷性:
指算法在执行有限步骤之后,自动结束而不会出现无限循环,并且每一个步骤在可接受的时间内完成。
③确定性:
算法的每一步骤都具有确定的含义,不会出现二义性。
④可行性:
算法的每一步都必须是可行的,也就是说,每一步都能够通过执行有限次数完成。
4、算法设计要求(4个)
①正确性:
指算法至少应该具有输入、输出和加工处理无歧义性,能正确反应问题的需求,能够得到问题的正确答案。
②可读性:
便于阅读、理解和交流是算法设计的另一个目的。
③健壮性:
当输入数据不合法时,算法也能做出相关处理,而不是产生异常或莫名其妙的结果。
④时间效率高和存储量低:
设计算法应该尽量满足时间效率和存储量低的需求。
二、算法效率的度量方法
1、事后统计法(有缺陷,不采纳此方法):
定义:主要是通过设计好的测试程序和数据,利用计算机计时器对不同算法编制的程序的运行时间进行比较,从而确定算法效率的高低。
2、事前分析估算法:
定义:在计算机程序编制前,依据统计方法对算法进行估算。
算法估算包括:
①算法采用的策略、方法。(算法有关)
②编译产生的代码质量。(由软件支持)
③问题输入规模。(算法有关)
④机器执行指令的速度。(与硬件性能有关)
三、算法的时间复杂度和空间复杂度
(概要版,详细的解释过多,后期单独写一篇博客)
复杂度详解博客预留链接:###
1、时间复杂度:
常用大O表示法,大O表示法例子:O(2n+3)=O(3n+1)=O(n),细枝末节都剪去。
2、常见时间复杂度:
常数阶,线性阶,平方阶,对数阶,nlogn阶,立法阶,指数阶。
O(1)<O(logn)<O(n)<O(nlogn)<O(n方)<O(n指数次方)<O(2的n次方)<O(n!)<O(n的n次方)
3、最坏情况与平均情况:
平均运行时间师所有情况中最有意义的,因为他是期望的运行时间。
一般在没有特殊说明的情况下,都是指最坏的时间复杂度。
4、算法空间复杂度:
算法的空间复杂度通过计算算法所需的存储空间实现,算法空间复杂度的计算公式为:
Sn = O(f(n)),n为问题规模,fn为语句关于n所占存储空间的函数。
不用限定词使用复杂度一般都是指的时间复杂度。