Queue

Queue

队列(Queue)是一种经常使用的集合。Queue实际上是实现了一个先进先出(FIFO:First In First Out)的有序表。它和List的区别在于,List可以在任意位置添加和删除元素,而Queue只有两个操作:

  • 把元素添加到队列末尾;
  • 从队列头部取出元素。

队列接口Queue定义了以下几个方法:

  • int size():获取队列长度;
  • boolean add(E)/boolean offer(E):添加元素到队尾;
  • E remove()/E poll():获取队首元素并从队列中删除;
  • E element()/E peek():获取队首元素但并不从队列中删除。
throw Exception返回false或null
添加元素到队尾add(E e)boolean offer(E e)
取队首元素并删除E remove()E poll()
取队首元素但不删除E element()E peek()

注意:不要把null添加到队列中,否则poll()方法返回null时,很难确定是取到了null元素还是队列为空。

LinkedList即实现了List接口,又实现了Queue接口,但是,在使用的时候,如果我们把它当作List,就获取List的引用,如果我们把它当作Queue,就获取Queue的引用:

// 这是一个List:
List<String> list = new LinkedList<>();
// 这是一个Queue:
Queue<String> queue = new LinkedList<>();

Deque

是Queue的子接口 描述的是双端队列的操作 重点操作表的头尾

此接口定义在双端队列两端访问元素的方法。提供插入、移除和检查元素的方法。每种方法都存在两种形式:一种形式在操作失败时抛出异常,另一种形式返回一个特殊值(nullfalse,具体取决于操作)。插入操作的后一种形式是专为使用有容量限制的 Deque 实现设计的;在大多数实现中,插入操作不能失败。

插入addFirst(e)offerFirst(e)(E))addLast(e)(E))offerLast(e)(E))
移除removeFirst()pollFirst()removeLast()pollLast()
检查getFirst()[peekFirst()getLast())peekLast()

此接口扩展了 Queue 接口。在将双端队列用作队列时,将得到 FIFO(先进先出)行为。将元素添加到双端队列的末尾,从双端队列的开头移除元素。从 Queue 接口继承的方法完全等效于 Deque 方法,如下表所示:

Queue 方法等效 Deque 方法
add(e)addLast(e)
offer(e)offerLast(e)
remove()removeFirst()
poll()pollFirst()
element()getFirst()
peek()peekFirst()

双端队列也可用作 LIFO(后进先出)堆栈。应优先使用此接口而不是遗留 Stack 类。在将双端队列用作堆栈时,元素被推入双端队列的开头并从双端队列开头弹出。堆栈方法完全等效于 Deque 方法,如下表所示:

堆栈方法等效 Deque 方法
push(e)addFirst(e)
pop()removeFirst()
peek()peekFirst()

注意,在将双端队列用作队列或堆栈时,peek 方法同样正常工作;无论哪种情况下,都从双端队列的开头抽取元素。

虽然 Deque 实现没有严格要求禁止插入 null 元素,但建议最好这样做。建议任何事实上允许 null 元素的 Deque 实现用户最好 要利用插入 null 的功能。这是因为各种方法会将 null 用作特殊的返回值来指示双端队列为空。

ArrayDeque

Deque 接口的大小可变数组的实现。数组双端队列没有容量限制;它们可根据需要增加以支持使用。它们不是线程安全的;在没有外部同步时,它们不支持多个线程的并发访问。禁止 null 元素。此类很可能在用作堆栈时快于 Stack,在用作队列时快于 LinkedList

底层数组实现 不同步 禁止null
其他功能和LinkedList一模一样
可以把类理解为数组版的LinkedList

PriorityQueue 优先队列

PriorityQueueQueue的区别在于,它的出队顺序与元素的优先级有关,对PriorityQueue调用remove()poll()方法,返回的总是优先级最高的元素。

要使用PriorityQueue,我们就必须给每个元素定义“优先级”。

放入PriorityQueue的元素,必须实现Comparable接口,PriorityQueue会根据元素的排序顺序决定出队的优先级。

如果我们要放入的元素并没有实现Comparable接口怎么办?PriorityQueue允许我们提供一个Comparator对象来判断两个元素的顺序。

底层数据结构最小堆结构(最大堆)
本质上就是一个二叉树
二分搜索树特点:任何一个结点的左孩子比你小 右孩子比你大 底层实现 链表实现
最小堆特点:任何一个结点都比左右两个孩子小 完全二叉树 底层实现 数组实现
自然排序 禁止null 不同步

实现最小堆和最大堆

最大堆:根结点的键值是所有堆结点键值中最大者,且每个结点的值都比其孩子的值大。

最小堆:根结点的键值是所有堆结点键值中最小者,且每个结点的值都比其孩子的值小。

//最小堆实现
PriorityQueue<Integer> queue = new PriorityQueue<>();
//最大堆实现
PriorityQueue<Integer> queue2 = new PriorityQueue<>(new Comparator<Integer>() {
    @Override
    public int compare(Integer o1, Integer o2) {
        return o2 - o1;
    }
});
Random random = new Random();
for (int i = 0; i < 10; i++) {
    int num =  random.nextInt(15);
    queue.offer(num);
    queue2.offer(num);
}
System.out.println(queue);
System.out.println(queue2);

System.out.println(queue.poll());
System.out.println(queue2.poll());

有一组N个元素的数组 求前K个大的元素

//思路一 全部降序排序 遍历前K个
//思路二 优先队列 先把所有元素放到优先队列(最大堆)中 出队K次
int[] arr = new int[1000];
Random random = new Random();
for (int i = 0; i < arr.length; i++) {
    arr[i] = random.nextInt(10000);
}
PriorityQueue<Integer> queue = new PriorityQueue<>(new Comparator<Integer>() {
    @Override
    public int compare(Integer o1, Integer o2) {
        return o2 - o1;
    }
});
for (int i = 0; i < arr.length; i++) {
    queue.offer(arr[i]);
}
for (int i = 0; i < 10; i++) {
    System.out.println(queue.poll());
}

PriorityQueue实现了一个优先队列:从队首获取元素时,总是获取优先级最高的元素。

PriorityQueue默认按元素比较的顺序排序(必须实现Comparable接口),也可以通过Comparator自定义排序算法(元素就不必实现Comparable接口)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_59138290

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值