自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

淳于淼

本人因专业不和问题现已肄业,编程是兴趣爱好不是工作,没事随便写点,还请诸位多多包涵

  • 博客(6)
  • 收藏
  • 关注

原创 有向图的拓扑排序

拓扑排序:是一个有向无环图的所有顶点的线性序列。 且该序列必须满足,每个顶点出现且只出现一次。 若存在一条从顶点A 到顶点B 的路径,那么在序列中顶点A 出现在顶点B 的前面。首先一个有向无环图一定存在入度为0的点思路: 先将入度为0的点入队;出队一点,按bfs的思路 每到下一点,就将这一点的度减1,当此点的度为0时,再将此点入队 ,当队尾指针tt(初始化为-1)的值为n-1时,表示此图可以拓扑排序。此时,q[0~n-1]的值即为拓扑序时间复杂度 O(n+m), n表示点数,m 表示边数模板.

2022-02-15 14:41:01 352

原创 【树与图】

一,树与图的储存树是一种特殊的图,与图的存储方式相同。对于无向图中的边ab,存储两条有向边a->b, b->a。因此我们可以只考虑有向图的存储。(1) 邻接矩阵:g[a][b] 存储边a->b(2) 邻接表:// 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点int h[N], e[N], ne[N], idx;// 添加一条边a->bvoid add(int a, int b){ e[idx] = b, n

2022-02-13 20:13:24 137

原创 深搜DFS与宽搜BFS

dfs深度优先搜索算法 (DFS )是一种用于遍历或搜索 树 或 图 的 算法 。. 这个算法会尽可能深的搜索树的分支。. 当节点v的所在边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。. 这一过程一直进行到已发现从源节点可达的所有节点为止。. 如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。可以理解为走迷宫模板:int dfs(int u){ st[u] = true; // st[u] 表示点u已经被遍历过

2022-02-11 20:33:11 248

原创 哈希表与字符串哈希

哈希表作用:哈希表就是根据一个关键值key进行高效访问的数据结构,可以通过哈希函数把一个数据当做key进行映射得到一个储存地址从而进行访问。比如:想要查询100个数字范围在(1 ~ 1e8),查询它们是否有重复的值,那么就可以用哈希表来解决这个问题。哈希函数:指将哈希表中元素的关键键值映射为元素存储位置的函数。数据冲突:将两个不一样的数映射成相同的数。一,存储结构(根据数据冲突):1拉链法拉链法处理冲突很简单,对于几个重复的值可以把他们放在一个链表里,查询时只需要去翻查链表就

2022-02-09 18:31:42 614

原创 【模拟】堆

手写堆堆的存储:一维数组,定义数组h[10],h[1]为堆顶,其中h[x]的左节点为h[2x],右节点为h[2x+1]。size:表示堆的大小heap:表示堆ph[k]:存储第k个插入的点在堆中的位置hp[k]:存储堆中下标是k的点是第几个插入的建堆(O(n)):for (int i = n / 2; i; i -- ) down(i);堆的操作:1,down(x){ }(当堆中一个数变大,将其下沉)void down(int u){ int t = u;

2022-01-28 19:38:28 694

原创 并查集【模板】

作用:1:将两元素合并,2:访问两元素是否在同一个集合中。举个例子:给定2个数1 2;集合编号分别为1 2;先查询1与2是否在同一集合,此时1与2不在一个集合;接下来将1与2所在集合1与集合2合并,集合2-->集合1;集合编号为1 1;此时查询1与2是否在同一集合,那1与2都在集合1中。那么如何实现捏,首先要解决三个问题问题:1,如何判断根节点:--->if(p[x]==x)问题:2,如何求x的集合编号:--->while(p[x]=

2022-01-26 02:14:31 303

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除