【模拟】堆

手写堆

堆的存储:一维数组,定义数组h[10],h[1]为堆顶,其中h[x]的左节点为h[2x],右节点为h[2x+1]。

size:表示堆的大小

heap:表示堆

ph[k]:存储第k个插入的点在堆中的位置

hp[k]:存储堆中下标是k的点是第几个插入的

建堆O(n)):

for (int i = n / 2; i; i -- ) down(i);

堆的操作

1,down(x){ }(当堆中一个数变大,将其下沉)

void down(int u)
{
    int t = u;
    if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
    if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
    if (u != t)
    {
        heap_swap(u, t);
        down(t);
    }
}

2,up(x){ }(当堆中一个数变大,将其上浮)

void up(int u)
{
    while (u / 2 && h[u] < h[u / 2])
    {
        heap_swap(u, u / 2);
        u >>= 1;
    }
}

交换两个点,及其映射关系

void heap_swap(int a, int b)
{
    swap(ph[hp[a]],ph[hp[b]]);
    swap(hp[a], hp[b]);
    swap(h[a], h[b]);
}

堆的应用:

1,插入一个数:

        在堆的最后插入一个元素,将元素调整至合适位位置:heap[++ size] = x; up(size);

2,求集合中的最小值:     

        堆中第一个数一定最小:heap[1];

3,删除最小值(堆顶):           

        先用堆的最后一个元素覆盖堆顶,再删除最后一个元素,

        最后再维护堆(将覆盖后的堆顶下沉)。

        heap[1] = heap[size]; size -- ; down(1);

4,删除任意一个元素:     

        同(3)注:heap[k]的值会有增减不变三种情况,

        但up&down只会执行一种所以这里可以down&up都写。

        heap[k] = heap[size]; size -- ; down(k); up(k);

5,修改任意一个元素:

        同(4)

        heap[k] = x; down(k); up(k);

结合以下题目:

模拟堆:

题干:

维护一个集合,初始时集合为空,支持如下几种操作:

  1. I x,插入一个数 x;
  2. PM,输出当前集合中的最小值;
  3. DM,删除当前集合中的最小值(数据保证此时的最小值唯一);
  4. D k,删除第 k个插入的数;
  5. C k x,修改第 k个插入的数,将其变为 x;

现在要进行 N次操作,对于所有第 2 个操作,输出当前集合的最小值。

输入格式:

第一行包含整数 N

接下来 N,每行包含一个操作指令,操作指令为 I x,PM,DM,D k  C k x 中的一种。

输出格式:

对于每个输出指令 PM,输出一个结果,表示当前集合中的最小值。

每个结果占一行。

数据范围:

1≤N≤1051≤N≤105
−109x≤109−109≤x≤109
数据保证合法。

输入样例:

8
I -10
PM
I -10
D 1
C 2 8
I 6
PM
DM

输出:

-10
6

代码模板:

#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
const int N=100010;
int h[N],ph[N],hp[N],cnt;
//交换两个点,及其映射关系(不是很常用)
void heap_swap(int a, int b)
{
    swap(ph[hp[a]],ph[hp[b]]);
    swap(hp[a],hp[b]);
    swap(h[a],h[b]);
}
//down操作
void down(int u)
{
    int t=u;
    if(u*2<=cnt&&h[u*2]<h[t]) t=u*2;
    if(u*2+1<=cnt&&h[u*2+1]<h[t]) t=u*2+1;
    if(u!=t)
    {
        heap_swap(u,t);
        down(t);
    }
}
//up操作
void up(int u)
{
    while(u/2&&h[u]<h[u/2])
    {
        heap_swap(u,u/2);
        u>>=1;
    }
}
//
int main()
{
    int n,m=0;
    scanf("%d",&n);
    while(n--)
    {
        char op[5];
        int k,x;
        scanf("%s",op);
        //操作I
        if(!strcmp(op,"I"))
        {
            scanf("%d",&x);
            cnt++;
            m++;
            ph[m]=cnt,hp[cnt]=m;
            h[cnt]=x;
            up(cnt);
        }
        //操作PM
        else if(!strcmp(op,"PM"))
            printf("%d\n",h[1]);
        //操作DM
        else if(!strcmp(op,"DM"))
        {
            heap_swap(1,cnt);
            cnt--;
            down(1);
        }
        //操作D
        else if(!strcmp(op,"D"))
        {
            scanf("%d",&k);
            k=ph[k];
            heap_swap(k,cnt);
            cnt--;
            up(k);
            down(k);
        }
        //操作C
        else
        {
            scanf("%d%d",&k,&x);
            k=ph[k];
            h[k]=x;
            up(k);
            down(k);
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阡陌魂牵梦萦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值