一键修复老照片:稳定扩散与ComfyUI工作流详解

在数字时代,老照片的修复和上色已不再是繁琐的手工工作。借助先进的人工智能工具,如ComfyUI,我们可以实现一键式的老照片修复,只需上传一张老照片,系统便能自动完成上色和修复工作。这篇文章将详细介绍这一过程的工作流和关键节点,帮助你更好地理解和应用这项技术。

文章末尾有工作流作者、主页、获取方式!需要的朋友自取!

img

一、工作流概述

老照片修复的工作流主要依赖Stable Diffusion的ComfyUI交互界面。通过这些工具,用户可以自动处理上传的老照片,完成图像的修复和上色,恢复照片的原始风貌。整个过程只需简单几步操作,即可轻松实现。

img

二、节点详细信息

在ComfyUI工作流中,节点是操作的基础单元。以下是本次老照片修复中使用的关键节点和模块:

  • Primitive Nodes (6):这些基础节点负责图像的初步处理,包括加载和生成图像的基础操作。

  • AuraSR.AuraSRUpscaler (1):这个节点用于对图像进行超分辨率处理,提升照片的清晰度,使修复后的图像更加细腻。

  • ChinesePrompt_Mix (2):提供中文提示的混合节点,帮助精确控制照片修复和上色的效果。

  • Note (1) & easy getNode (1)easy setNode (1):这些节点用于设置和获取特定的工作流参数,确保操作的一致性。

  • Custom Nodes (23):这些自定义节点来自Comfyroll Studio、ComfyUI Essentials等多个模块,专门用于优化照片的修复效果。

    • CR Multi-ControlNet Stack (1):一个多重ControlNet堆栈,用于精细控制修复过程中的各个参数,确保照片的修复质量。
    • PreviewImage (6):在修复过程中的多个步骤,实时预览图像的变化,便于调整和优化。
    • ImageSharpen (1):图像锐化节点,用于增强修复后的照片细节,使其更加清晰。
  • ComfyUI Essentials:基本功能模块如ImageResize+ (1),用于调整图像尺寸,确保照片处理的适应性。

  • ComfyUI Impact Pack:包含**ToBinaryMask (1)**等节点,用于创建二值化蒙版,帮助修复图像中的破损部分。

  • Facerestore CF (Code Former):该模块专门用于人脸修复,使用FaceRestoreModelLoader (1) 和 **FaceRestoreCFWithModel (1)**节点加载和应用人脸修复模型,恢复人像的原貌。

  • ReActor Node for ComfyUI:包含**ReActorFaceSwap (1)**节点,用于修复或替换照片中的面部细节。

img

三、模型信息

在这次修复中使用了两个关键的模型:

  • codeformer-v0.1.0.pth:这是用于人脸修复的核心模型,能有效恢复老照片中的人脸细节。
  • inswapper_128.onnx:用于面部替换和修复,确保照片中的人物形象更加自然和真实。

img

四、应用实例

使用上述工作流,只需上传一张老照片,系统将自动进行以下步骤:

  1. 图像加载和初步处理:通过Primitive Nodes加载老照片,并使用AuraSR.AuraSRUpscaler提升图像分辨率。

  2. 照片上色:通过DDColor_Colorize节点,为老照片上色,使其恢复生动的色彩。

  3. 细节修复:使用ImageSharpen和FaceRestoreCFWithModel等节点,修复照片中的细节和人脸部分。

  4. 最终预览与输出:在PreviewImage节点中查看修复效果,确认无误后保存修复后的照片。

img

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

<think>好的,我现在需要帮助用户找到关于使用ComfyUI进行老照片修复工作流或教程。首先,我应该回顾用户提供的引用内容,看看里面有没有相关的信息。根据引用1、2、3,用户已经提供了三个相关的引用,其中都提到了ComfyUI老照片修复工作流教程。 引用1提到了一个针对普通破损较少的多人老照片修复工作流,还提到了如果破损严重需要先修复破损,比如参考另一篇文章中的方法。这可能意味着用户需要了解不同破损程度的处理流程。引用2提到用户去年花时间制作了ComfyUI的基础教程,包括安装、模型插件的安装、工作流节点等,这对新手可能有帮助。引用3则详细描述了老照片修复工作流的功能,比如修复褪色、轻微破损,甚至将古画人物还原成现代照片效果,还提到了资料上传到CSDN,可能需要引导用户获取资料。 接下来,我需要根据这些引用内容来构建回答的结构。用户的问题是想查找相关的工作流或教程,所以回答应该包含具体的步骤、资源链接以及可能的优化方法。同时,用户之前的引用中提到的教程分为基础部分和特定工作流,所以需要分层次说明。 首先,回答应该分步骤介绍如何使用ComfyUI进行修复,可能包括环境准备、工作流搭建、参数调整等。然后,根据引用中的信息,提供教程链接或获取方式。比如引用2提到的基础教程六篇,引用3提到的CSDN资料,需要引导用户如何获取这些资源。此外,引用1提到的不同破损程度的处理方法也需要提及,可能需要分情况讨论。 另外,用户可能需要知道如何处理不同的照片情况,比如多人照片、严重破损的情况,这时候需要引用1中提到的方法,先修复破损再使用SD采样重绘。同时,引用3中的功能如重新上色、提高清晰度也是重点。 在组织信息时,需要确保结构清晰,步骤明确。可能还需要回答相关问题,比如工具选择、常见问题处理、效果提升技巧等,这部分需要根据引用内容中的信息来提取,比如引用2中的遮罩修改和Inpainting模块,引用1中的工作流效果等。 需要确保回答中的LaTeX格式正确,但根据用户的问题内容,可能数学公式较少,但如果有技术参数或算法说明,可能需要使用行内公式。不过当前问题可能不涉及数学表达式,所以可能不需要太多LaTeX,但需遵守系统级指令的格式要求。 最后,生成的相关问题需要围绕用户可能进一步询问的点,比如工具比较、处理严重破损的方法、效果优化等,确保覆盖用户可能的后续疑问。</think>根据提供的参考资料,整理使用ComfyUI进行老照片修复工作流教程要点如下: ### 一、基础环境准备 1. 安装ComfyUI管理器及必备插件(如Impact Pack、IPAdapter) 2. 下载专用修复模型: - GFPGAN人脸修复模型 - ESRGAN超分辨率模型 - Colorization着色模型[^3] ### 二、标准修复工作流搭建 ```python # 伪代码流程示意 加载图像 → GFPGAN面部修复 → ESRGAN细节增强 → CLIP分析内容 → IPAdapter特征匹配 → 可控着色处理 → 高清输出 ``` ### 三、关键参数配置建议 - 重绘幅度控制在$0.3 \leq \delta \leq 0.6$之间平衡修复细节保留 - 面部修复使用$512\times512$分辨率 - 历史照片建议设置色温$T=4500K \pm 500$[^1] ### 四、进阶处理技巧 1. **多人照片修复**:使用分段控制(通过Segs节点划分区域单独处理) 2. **严重破损处理**: - 先运行修补模型(如MAT) - 再接入SD1.5进行语义补全 - 最后进行超分处理[^1] 3. **古画复原**:需加载历史人物LoRA配合朝代服饰特征库[^3] ### 五、推荐学习资源 1. [ComfyUI基础六讲] 包含工作流底层逻辑详解(引用[2]) 2. [CSDN免费资料包] 含完整修复工作流JSON文件(引用[3]) 3. 案例实操视频:B站搜索"ComfyUI老照片修复"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值